Publications

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Exploiting Gene Expression Profiles for the Automated Prediction of Connectivity between Brain Regions

Authors: Roberti, Ilaria; Lovino, Marta; Di Cataldo, Santa; Ficarra, Elisa; Urgese, Gianvito

Published in: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES

The brain comprises a complex system of neurons interconnected by an intricate network of anatomical links. While recent studies demonstrated … (Read full abstract)

The brain comprises a complex system of neurons interconnected by an intricate network of anatomical links. While recent studies demonstrated the correlation between anatomical connectivity patterns and gene expression of neurons, using transcriptomic information to automatically predict such patterns is still an open challenge. In this work, we present a completely data-driven approach relying on machine learning (i.e., neural networks) to learn the anatomical connection directly from a training set of gene expression data. To do so, we combined gene expression and connectivity data from the Allen Mouse Brain Atlas to generate thousands of gene expression profile pairs from different brain regions. To each pair, we assigned a label describing the physical connection between the corresponding brain regions. Then, we exploited these data to train neural networks, designed to predict brain area connectivity. We assessed our solution on two prediction problems (with three and two connectivity class categories) involving cortical and cerebellum regions. As demonstrated by our results, we distinguish between connected and unconnected regions with 85% prediction accuracy and good balance of precision and recall. In our future work we may extend the analysis to more complex brain structures and consider RNA-Seq data as additional input to our model.

2019 Articolo su rivista

Face Verification from Depth using Privileged Information

Authors: Borghi, Guido; Pini, Stefano; Grazioli, Filippo; Vezzani, Roberto; Cucchiara, Rita

In this paper, a deep Siamese architecture for depth-based face verification is presented. The proposed approach efficiently verifies if two … (Read full abstract)

In this paper, a deep Siamese architecture for depth-based face verification is presented. The proposed approach efficiently verifies if two face images belong to the same person while handling a great variety of head poses and occlusions. The architecture, namely JanusNet, consists in a combination of a depth, a RGB and a hybrid Siamese network. During the training phase, the hybrid network learns to extract complementary mid-level convolutional features which mimic the features of the RGB network, simultaneously leveraging on the light invariance of depth images. At testing time, the model, relying only on depth data, achieves state-of-art results and real time performance, despite the lack of deep-oriented depth-based datasets.

2019 Relazione in Atti di Convegno

Gait-Based Diplegia Classification Using LSMT Networks

Authors: Ferrari, Alberto; Bergamini, Luca; Guerzoni, Giorgio; Calderara, Simone; Bicocchi, Nicola; Vitetta, Giorgio; Borghi, Corrado; Neviani, Rita; Ferrari, Adriano

Published in: JOURNAL OF HEALTHCARE ENGINEERING

Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent … (Read full abstract)

Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent works proposed to use gait analysis for diplegia classification paving the way for automated analysis. A clinically established gait-based classification system divides diplegic patients into 4 main forms, each one associated with a peculiar walking pattern. In this work, we apply two different deep learning techniques, namely, multilayer perceptron and recurrent neural networks, to automatically classify children into the 4 clinical forms. For the analysis, we used a dataset comprising gait data of 174 patients collected by means of an optoelectronic system. The measurements describing walking patterns have been processed to extract 27 angular parameters and then used to train both kinds of neural networks. Classification results are comparable with those provided by experts in 3 out of 4 forms.

2019 Articolo su rivista

Give Ear to My Face: Modelling Multimodal Attention to Social Interactions

Authors: Boccignone, Giuseppe; Cuculo, Vittorio; D’Amelio, Alessandro; Grossi, Giuliano; Lanzarotti, Raffaella

Published in: LECTURE NOTES IN COMPUTER SCIENCE

We address the deployment of perceptual attention to social interactions as displayed in conversational clips, when relying on multimodal information … (Read full abstract)

We address the deployment of perceptual attention to social interactions as displayed in conversational clips, when relying on multimodal information (audio and video). A probabilistic modelling framework is proposed that goes beyond the classic saliency paradigm while integrating multiple information cues. Attentional allocation is determined not just by stimulus-driven selection but, importantly, by social value as modulating the selection history of relevant multimodal items. Thus, the construction of attentional priority is the result of a sampling procedure conditioned on the potential value dynamics of socially relevant objects emerging moment to moment within the scene. Preliminary experiments on a publicly available dataset are presented.

2019 Relazione in Atti di Convegno

Going Deeper into Colorectal Cancer Histopathology

Authors: Ponzio, Francesco; Macii, Enrico; Ficarra, Elisa; Di Cataldo, Santa

Published in: COMMUNICATIONS IN COMPUTER AND INFORMATION SCIENCE

The early diagnosis of colorectal cancer (CRC) traditionally leverages upon the microscopic examination of histological slides by experienced pathologists, which … (Read full abstract)

The early diagnosis of colorectal cancer (CRC) traditionally leverages upon the microscopic examination of histological slides by experienced pathologists, which is very time-consuming and rises many issues about the reliability of the results. In this paper we propose using Convolutional Neural Networks (CNNs), a class of deep networks that are successfully used in many contexts of pattern recognition, to automatically distinguish the cancerous tissues from either healthy or benign lesions. For this purpose, we designed and compared different CNN-based classification frameworks, involving either training CNNs from scratch on three classes of colorectal images, or transfer learning from a different classification problem. While a CNN trained from scratch obtained very good (about 90%) classification accuracy in our tests, the same CNN model pre-trained on the ImageNet dataset obtained even better accuracy (around 96%) on the same testing samples, requiring much lesser computational resources.

2019 Capitolo/Saggio

Hand Gestures for the Human-Car Interaction: the Briareo dataset

Authors: Manganaro, Fabio; Pini, Stefano; Borghi, Guido; Vezzani, Roberto; Cucchiara, Rita

Natural User Interfaces can be an effective way to reduce driver's inattention during the driving activity. To this end, in … (Read full abstract)

Natural User Interfaces can be an effective way to reduce driver's inattention during the driving activity. To this end, in this paper we propose a new dataset, called Briareo, specifically collected for the hand gesture recognition task in the automotive context. The dataset is acquired from an innovative point of view, exploiting different kinds of cameras, i.e. RGB, infrared stereo, and depth, that provide various types of images and 3D hand joints. Moreover, the dataset contains a significant amount of hand gesture samples, performed by several subjects, allowing the use of deep learning-based approaches. Finally, a framework for hand gesture segmentation and classification is presented, exploiting a method introduced to assess the quality of the proposed dataset.

2019 Relazione in Atti di Convegno

How does Connected Components Labeling with Decision Trees perform on GPUs?

Authors: Allegretti, Stefano; Bolelli, Federico; Cancilla, Michele; Pollastri, Federico; Canalini, Laura; Grana, Costantino

Published in: LECTURE NOTES IN COMPUTER SCIENCE

In this paper the problem of Connected Components Labeling (CCL) in binary images using Graphic Processing Units (GPUs) is tackled … (Read full abstract)

In this paper the problem of Connected Components Labeling (CCL) in binary images using Graphic Processing Units (GPUs) is tackled by a different perspective. In the last decade, many novel algorithms have been released, specifically designed for GPUs. Because CCL literature concerning sequential algorithms is very rich, and includes many efficient solutions, designers of parallel algorithms were often inspired by techniques that had already proved successful in a sequential environment, such as the Union-Find paradigm for solving equivalences between provisional labels. However, the use of decision trees to minimize memory accesses, which is one of the main feature of the best performing sequential algorithms, was never taken into account when designing parallel CCL solutions. In fact, branches in the code tend to cause thread divergence, which usually leads to inefficiency. Anyway, this consideration does not necessarily apply to every possible scenario. Are we sure that the advantages of decision trees do not compensate for the cost of thread divergence? In order to answer this question, we chose three well-known sequential CCL algorithms, which employ decision trees as the cornerstone of their strategy, and we built a data-parallel version of each of them. Experimental tests on real case datasets show that, in most cases, these solutions outperform state-of-the-art algorithms, thus demonstrating the effectiveness of decision trees also in a parallel environment.

2019 Relazione in Atti di Convegno

Image-to-Image Translation to Unfold the Reality of Artworks: an Empirical Analysis

Authors: Tomei, Matteo; Cornia, Marcella; Baraldi, Lorenzo; Cucchiara, Rita

Published in: LECTURE NOTES IN COMPUTER SCIENCE

State-of-the-art Computer Vision pipelines show poor performances on artworks and data coming from the artistic domain, thus limiting the applicability … (Read full abstract)

State-of-the-art Computer Vision pipelines show poor performances on artworks and data coming from the artistic domain, thus limiting the applicability of current architectures to the automatic understanding of the cultural heritage. This is mainly due to the difference in texture and low-level feature distribution between artistic and real images, on which state-of-the-art approaches are usually trained. To enhance the applicability of pre-trained architectures on artistic data, we have recently proposed an unpaired domain translation approach which can translate artworks to photo-realistic visualizations. Our approach leverages semantically-aware memory banks of real patches, which are used to drive the generation of the translated image while improving its realism. In this paper, we provide additional analyses and experimental results which demonstrate the effectiveness of our approach. In particular, we evaluate the quality of generated results in the case of the translation of landscapes, portraits and of paintings coming from four different styles using automatic distance metrics. Also, we analyze the response of pre-trained architecture for classification, detection and segmentation both in terms of feature distribution and entropy of prediction, and show that our approach effectively reduces the domain shift of paintings. As an additional contribution, we also provide a qualitative analysis of the reduction of the domain shift for detection, segmentation and image captioning.

2019 Relazione in Atti di Convegno

Improving the Performance of Thinning Algorithms with Directed Rooted Acyclic Graphs

Authors: Bolelli, Federico; Grana, Costantino

Published in: LECTURE NOTES IN COMPUTER SCIENCE

In this paper we propose a strategy to optimize the performance of thinning algorithms. This solution is obtained by combining … (Read full abstract)

In this paper we propose a strategy to optimize the performance of thinning algorithms. This solution is obtained by combining three proven strategies for binary images neighborhood exploration, namely modeling the problem with an optimal decision tree, reusing pixels from the previous step of the algorithm, and reducing the code footprint by means of Directed Rooted Acyclic Graphs. A complete and open-source benchmarking suite is also provided. Experimental results confirm that the proposed algorithms clearly outperform classical implementations.

2019 Relazione in Atti di Convegno

Latent Space Autoregression for Novelty Detection

Authors: Abati, Davide; Porrello, Angelo; Calderara, Simone; Cucchiara, Rita

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of … (Read full abstract)

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts.

2019 Relazione in Atti di Convegno

Page 45 of 106 • Total publications: 1054