Publications

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Neuro Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal

Authors: Marconato, Emanuele; Bontempo, Gianpaolo; Ficarra, Elisa; Calderara, Simone; Passerini, Andrea; Teso, Stefano

2023 Working paper

Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal

Authors: Marconato, E.; Bontempo, G.; Ficarra, E.; Calderara, S.; Passerini, A.; Teso, S.

Published in: PROCEEDINGS OF MACHINE LEARNING RESEARCH

We introduce Neuro-Symbolic Continual Learning, where a model has to solve a sequence of neuro-symbolic tasks, that is, it has … (Read full abstract)

We introduce Neuro-Symbolic Continual Learning, where a model has to solve a sequence of neuro-symbolic tasks, that is, it has to map sub-symbolic inputs to high-level concepts and compute predictions by reasoning consistently with prior knowledge. Our key observation is that neuro-symbolic tasks, although different, often share concepts whose semantics remains stable over time. Traditional approaches fall short: existing continual strategies ignore knowledge altogether, while stock neuro-symbolic architectures suffer from catastrophic forgetting. We show that leveraging prior knowledge by combining neurosymbolic architectures with continual strategies does help avoid catastrophic forgetting, but also that doing so can yield models affected by reasoning shortcuts. These undermine the semantics of the acquired concepts, even when detailed prior knowledge is provided upfront and inference is exact, and in turn continual performance. To overcome these issues, we introduce COOL, a COncept-level cOntinual Learning strategy tailored for neuro-symbolic continual problems that acquires high-quality concepts and remembers them over time. Our experiments on three novel benchmarks highlights how COOL attains sustained high performance on neuro-symbolic continual learning tasks in which other strategies fail.

2023 Relazione in Atti di Convegno

Novel continual learning techniques on noisy label datasets

Authors: Millunzi, M.; Bonicelli, L.; Zurli, A.; Salman, A.; Credi, J.; Calderara, S.

Published in: CEUR WORKSHOP PROCEEDINGS

Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of … (Read full abstract)

Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of reliable data. However, they often struggle to handle realistic scenarios, particularly those in the financial sector, where available data constantly vary, increase daily, and may contain noise. As a result, we present an overview of the ongoing research at the AImageLab research laboratory of the University of Modena and Reggio Emilia, in collaboration with AxyonAI, focused on exploring Continual Learning methods in the presence of noisy data, with a special focus on noisy labels. To the best of our knowledge, this is a problem that has received limited attention from the scientific community thus far.

2023 Relazione in Atti di Convegno

On Using rPPG Signals for DeepFake Detection: A Cautionary Note

Authors: D’Amelio, Alessandro; Lanzarotti, Raffaella; Patania, Sabrina; Grossi, Giuliano; Cuculo, Vittorio; Valota, Andrea; Boccignone, Giuseppe

Published in: LECTURE NOTES IN COMPUTER SCIENCE

2023 Relazione in Atti di Convegno

OpenFashionCLIP: Vision-and-Language Contrastive Learning with Open-Source Fashion Data

Authors: Cartella, Giuseppe; Baldrati, Alberto; Morelli, Davide; Cornia, Marcella; Bertini, Marco; Cucchiara, Rita

Published in: LECTURE NOTES IN COMPUTER SCIENCE

The inexorable growth of online shopping and e-commerce demands scalable and robust machine learning-based solutions to accommodate customer requirements. In … (Read full abstract)

The inexorable growth of online shopping and e-commerce demands scalable and robust machine learning-based solutions to accommodate customer requirements. In the context of automatic tagging classification and multimodal retrieval, prior works either defined a low generalizable supervised learning approach or more reusable CLIP-based techniques while, however, training on closed source data. In this work, we propose OpenFashionCLIP, a vision-and-language contrastive learning method that only adopts open-source fashion data stemming from diverse domains, and characterized by varying degrees of specificity. Our approach is extensively validated across several tasks and benchmarks, and experimental results highlight a significant out-of-domain generalization capability and consistent improvements over state-of-the-art methods both in terms of accuracy and recall. Source code and trained models are publicly available at: https://github.com/aimagelab/open-fashion-clip.

2023 Relazione in Atti di Convegno

Positive-Augmented Contrastive Learning for Image and Video Captioning Evaluation

Authors: Sarto, Sara; Barraco, Manuele; Cornia, Marcella; Baraldi, Lorenzo; Cucchiara, Rita

Published in: PROCEEDINGS IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION

The CLIP model has been recently proven to be very effective for a variety of cross-modal tasks, including the evaluation … (Read full abstract)

The CLIP model has been recently proven to be very effective for a variety of cross-modal tasks, including the evaluation of captions generated from vision-and-language models. In this paper, we propose a new recipe for a contrastive-based evaluation metric for image captioning, namely Positive-Augmented Contrastive learning Score (PAC-S), that in a novel way unifies the learning of a contrastive visual-semantic space with the addition of generated images and text on curated data. Experiments spanning several datasets demonstrate that our new metric achieves the highest correlation with human judgments on both images and videos, outperforming existing reference-based metrics like CIDEr and SPICE and reference-free metrics like CLIP-Score. Finally, we test the system-level correlation of the proposed metric when considering popular image captioning approaches, and assess the impact of employing different cross-modal features. We publicly release our source code and trained models.

2023 Relazione in Atti di Convegno

Predicting gene and protein expression levels from DNA and protein sequences with Perceiver

Authors: Stefanini, Matteo; Lovino, Marta; Cucchiara, Rita; Ficarra, Elisa

Published in: COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE

Background and objective: The functions of an organism and its biological processes result from the expression of genes and proteins. … (Read full abstract)

Background and objective: The functions of an organism and its biological processes result from the expression of genes and proteins. Therefore quantifying and predicting mRNA and protein levels is a crucial aspect of scientific research. Concerning the prediction of mRNA levels, the available approaches use the sequence upstream and downstream of the Transcription Start Site (TSS) as input to neural networks. The State-of-the-art models (e.g., Xpresso and Basenjii) predict mRNA levels exploiting Convolutional (CNN) or Long Short Term Memory (LSTM) Networks. However, CNN prediction depends on convolutional kernel size, and LSTM suffers from capturing long-range dependencies in the sequence. Concerning the prediction of protein levels, as far as we know, there is no model for predicting protein levels by exploiting the gene or protein sequences. Methods: Here, we exploit a new model type (called Perceiver) for mRNA and protein level prediction, exploiting a Transformer-based architecture with an attention module to attend to long-range interactions in the sequences. In addition, the Perceiver model overcomes the quadratic complexity of the standard Transformer architectures. This work's contributions are 1. DNAPerceiver model to predict mRNA levels from the sequence upstream and downstream of the TSS; 2. ProteinPerceiver model to predict protein levels from the protein sequence; 3. Protein&DNAPerceiver model to predict protein levels from TSS and protein sequences. Results: The models are evaluated on cell lines, mice, glioblastoma, and lung cancer tissues. The results show the effectiveness of the Perceiver-type models in predicting mRNA and protein levels. Conclusions: This paper presents a Perceiver architecture for mRNA and protein level prediction. In the future, inserting regulatory and epigenetic information into the model could improve mRNA and protein level predictions. The source code is freely available at https://github.com/MatteoStefanini/DNAPerceiver.

2023 Articolo su rivista

Revelio: A Modular and Effective Framework for Reproducible Training and Evaluation of Morphing Attack Detectors

Authors: Borghi, Guido; Di Domenico, Nicolò; Franco, Annalisa; Ferrara, Matteo; Maltoni, Davide

Published in: IEEE ACCESS

Morphing Attack, i.e. the elusion of face verification systems through a facial morphing operation between a criminal and an accomplice, … (Read full abstract)

Morphing Attack, i.e. the elusion of face verification systems through a facial morphing operation between a criminal and an accomplice, has recently emerged as a serious security threat. Despite the importance of this kind of attack, the development and comparison of Morphing Attack Detection (MAD) methods is still a challenging task, especially with deep learning approaches. Specifically, the lack of public datasets, the absence of common training and validation protocols, and the limited release of public source code hamper the reproducibility and objective comparison of new MAD systems. Usually, these aspects are mainly due to privacy concerns, that limit data transfers and storage, and to the recent introduction of the MAD task. Therefore, in this paper, we propose and publicly release Revelio, a modular framework for the reproducible development and evaluation of MAD systems. We include an overview of the modules, and describe the plugin system providing the possibility of extending native components with new functionalities. An extensive cross-datasets experimental evaluation is conducted to validate the framework and the performance of trained models on several publicly-released datasets, and to deeply analyze the main challenges in the MAD task based on single input images. We also propose a new metric, namely WAED, to summarize in a single value the error-based metrics commonly used in the MAD task, computed over different datasets, thus facilitating the comparative evaluation of different approaches. Finally, by exploiting Revelio, a new state-of-the-art MAD model (on SOTAMD single-image benchmark) is proposed and released.

2023 Articolo su rivista

Scoring Enzootic Pneumonia-like Lesions in Slaughtered Pigs: Traditional vs. Artificial-Intelligence-Based Methods

Authors: Hattab, Jasmine; Porrello, Angelo; Romano, Anastasia; Rosamilia, Alfonso; Ghidini, Sergio; Bernabò, Nicola; Capobianco Dondona, Andrea; Corradi, Attilio; Marruchella, Giuseppe

Published in: PATHOGENS

Artificial-intelligence-based methods are regularly used in the biomedical sciences, mainly in the field of diagnostic imaging. Recently, convolutional neural networks … (Read full abstract)

Artificial-intelligence-based methods are regularly used in the biomedical sciences, mainly in the field of diagnostic imaging. Recently, convolutional neural networks have been trained to score pleurisy and pneumonia in slaughtered pigs. The aim of this study is to further evaluate the performance of a convolutional neural network when compared with the gold standard (i.e., scores provided by a skilled operator along the slaughter chain through visual inspection and palpation). In total, 441 lungs (180 healthy and 261 diseased) are included in this study. Each lung was scored according to traditional methods, which represent the gold standard (Madec’s and Christensen’s grids). Moreover, the same lungs were photographed and thereafter scored by a trained convolutional neural network. Overall, the results reveal that the convolutional neural network is very specific (95.55%) and quite sensitive (85.05%), showing a rather high correlation when compared with the scores provided by a skilled veterinarian (Spearman’s coefficient = 0.831, p < 0.01). In summary, this study suggests that convolutional neural networks could be effectively used at slaughterhouses and stimulates further investigation in this field of research.

2023 Articolo su rivista

Sharing Cultural Heritage—The Case of the Lodovico Media Library

Authors: Al Kalak, Matteo; Baraldi, Lorenzo

Published in: MULTIMODAL TECHNOLOGIES AND INTERACTION

2023 Articolo su rivista

Page 23 of 106 • Total publications: 1054