Publications by Simone Calderara

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Simone Calderara

Robust Re-Identification by Multiple Views Knowledge Distillation

Authors: Porrello, Angelo; Bergamini, Luca; Calderara, Simone

Published in: LECTURE NOTES IN COMPUTER SCIENCE

To achieve robustness in Re-Identification, standard methods leverage tracking information in a Video-To-Video fashion. However, these solutions face a large … (Read full abstract)

To achieve robustness in Re-Identification, standard methods leverage tracking information in a Video-To-Video fashion. However, these solutions face a large drop in performance for single image queries (e.g., Image-To-Video setting). Recent works address this severe degradation by transferring temporal information from a Video-based network to an Image-based one. In this work, we devise a training strategy that allows the transfer of a superior knowledge, arising from a set of views depicting the target object. Our proposal - Views Knowledge Distillation (VKD) - pins this visual variety as a supervision signal within a teacher-student framework, where the teacher educates a student who observes fewer views. As a result, the student outperforms not only its teacher but also the current state-of-the-art in Image-To-Video by a wide margin (6.3% mAP on MARS, 8.6% on Duke-Video-ReId and 5% on VeRi-776). A thorough analysis - on Person, Vehicle and Animal Re-ID - investigates the properties of VKD from a qualitatively and quantitatively perspective.

2020 Relazione in Atti di Convegno

Scoring pleurisy in slaughtered pigs using convolutional neural networks

Authors: Trachtman, A. R.; Bergamini, L.; Palazzi, A.; Porrello, A.; Capobianco Dondona, A.; Del Negro, E.; Paolini, A.; Vignola, G.; Calderara, S.; Marruchella, G.

Published in: VETERINARY RESEARCH

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide. Considering the relatively … (Read full abstract)

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide. Considering the relatively short lifespan of pigs, lesions can be still evident at slaughter, where they can be usefully recorded and scored. Therefore, the slaughterhouse represents a key check-point to assess the health status of pigs, providing unique and valuable feedback to the farm, as well as an important source of data for epidemiological studies. Although relevant, scoring lesions in slaughtered pigs represents a very time-consuming and costly activity, thus making difficult their systematic recording. The present study has been carried out to train a convolutional neural network-based system to automatically score pleurisy in slaughtered pigs. The automation of such a process would be extremely helpful to enable a systematic examination of all slaughtered livestock. Overall, our data indicate that the proposed system is well able to differentiate half carcasses affected with pleurisy from healthy ones, with an overall accuracy of 85.5%. The system was better able to recognize severely affected half carcasses as compared with those showing less severe lesions. The training of convolutional neural networks to identify and score pneumonia, on the one hand, and the achievement of trials in large capacity slaughterhouses, on the other, represent the natural pursuance of the present study. As a result, convolutional neural network-based technologies could provide a fast and cheap tool to systematically record lesions in slaughtered pigs, thus supplying an enormous amount of useful data to all stakeholders in the pig industry.

2020 Articolo su rivista

A Deep-learning-based approach to VM behavior Identification in Cloud Systems

Authors: Stefanini, M.; Lancellotti, R.; Baraldi, L.; Calderara, S.

2019 Relazione in Atti di Convegno

Can adversarial networks hallucinate occluded people with a plausible aspect?

Authors: Fulgeri, F.; Fabbri, Matteo; Alletto, Stefano; Calderara, S.; Cucchiara, R.

Published in: COMPUTER VISION AND IMAGE UNDERSTANDING

When you see a person in a crowd, occluded by other persons, you miss visual information that can be used … (Read full abstract)

When you see a person in a crowd, occluded by other persons, you miss visual information that can be used to recognize, re-identify or simply classify him or her. You can imagine its appearance given your experience, nothing more. Similarly, AI solutions can try to hallucinate missing information with specific deep learning architectures, suitably trained with people with and without occlusions. The goal of this work is to generate a complete image of a person, given an occluded version in input, that should be a) without occlusion b) similar at pixel level to a completely visible people shape c) capable to conserve similar visual attributes (e.g. male/female) of the original one. For the purpose, we propose a new approach by integrating the state-of-the-art of neural network architectures, namely U-nets and GANs, as well as discriminative attribute classification nets, with an architecture specifically designed to de-occlude people shapes. The network is trained to optimize a Loss function which could take into account the aforementioned objectives. As well we propose two datasets for testing our solution: the first one, occluded RAP, created automatically by occluding real shapes of the RAP dataset created by Li et al. (2016) (which collects also attributes of the people aspect); the second is a large synthetic dataset, AiC, generated in computer graphics with data extracted from the GTA video game, that contains 3D data of occluded objects by construction. Results are impressive and outperform any other previous proposal. This result could be an initial step to many further researches to recognize people and their behavior in an open crowded world.

2019 Articolo su rivista

Classifying Signals on Irregular Domains via Convolutional Cluster Pooling

Authors: Porrello, Angelo; Abati, Davide; Calderara, Simone; Cucchiara, Rita

Published in: PROCEEDINGS OF MACHINE LEARNING RESEARCH

We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties … (Read full abstract)

We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties of the dataset. To this end, we introduce a Convolutional Cluster Pooling layer exploiting a multi-scale clustering in order to highlight, at different resolutions, locally connected regions on the input graph. Our proposal generalises well-established neural models such as Convolutional Neural Networks (CNNs) on irregular and complex domains, by means of the exploitation of the weight sharing property in a graph-oriented architecture. In this work, such property is based on the centrality of each vertex within its soft-assigned cluster. Extensive experiments on NTU RGB+D, CIFAR-10 and 20NEWS demonstrate the effectiveness of the proposed technique in capturing both local and global patterns in graph-structured data out of different domains.

2019 Relazione in Atti di Convegno

End-to-end 6-DoF Object Pose Estimation through Differentiable Rasterization

Authors: Palazzi, Andrea; Bergamini, Luca; Calderara, Simone; Cucchiara, Rita

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Here we introduce an approximated differentiable renderer to refine a 6-DoF pose prediction using only 2D alignment information. To this … (Read full abstract)

Here we introduce an approximated differentiable renderer to refine a 6-DoF pose prediction using only 2D alignment information. To this end, a two-branched convolutional encoder network is employed to jointly estimate the object class and its 6-DoF pose in the scene. We then propose a new formulation of an approximated differentiable renderer to re-project the 3D object on the image according to its predicted pose; in this way the alignment error between the observed and the re-projected object silhouette can be measured. Since the renderer is differentiable, it is possible to back-propagate through it to correct the estimated pose at test time in an online learning fashion. Eventually we show how to leverage the classification branch to profitably re-project a representative model of the predicted class (i.e. a medoid) instead. Each object in the scene is processed independently and novel viewpoints in which both objects arrangement and mutual pose are preserved can be rendered. Differentiable renderer code is available at:https://github.com/ndrplz/tensorflow-mesh-renderer.

2019 Relazione in Atti di Convegno

Gait-Based Diplegia Classification Using LSMT Networks

Authors: Ferrari, Alberto; Bergamini, Luca; Guerzoni, Giorgio; Calderara, Simone; Bicocchi, Nicola; Vitetta, Giorgio; Borghi, Corrado; Neviani, Rita; Ferrari, Adriano

Published in: JOURNAL OF HEALTHCARE ENGINEERING

Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent … (Read full abstract)

Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent works proposed to use gait analysis for diplegia classification paving the way for automated analysis. A clinically established gait-based classification system divides diplegic patients into 4 main forms, each one associated with a peculiar walking pattern. In this work, we apply two different deep learning techniques, namely, multilayer perceptron and recurrent neural networks, to automatically classify children into the 4 clinical forms. For the analysis, we used a dataset comprising gait data of 174 patients collected by means of an optoelectronic system. The measurements describing walking patterns have been processed to extract 27 angular parameters and then used to train both kinds of neural networks. Classification results are comparable with those provided by experts in 3 out of 4 forms.

2019 Articolo su rivista

Latent Space Autoregression for Novelty Detection

Authors: Abati, Davide; Porrello, Angelo; Calderara, Simone; Cucchiara, Rita

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of … (Read full abstract)

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts.

2019 Relazione in Atti di Convegno

METODO DI VALUTAZIONE DI UNO STATO DI SALUTE DI UN ELEMENTO ANATOMICO, RELATIVO DISPOSITIVO DI VALUTAZIONE E RELATIVO SISTEMA DI VALUTAZIONE

Authors: Giuseppe, Marrucchella; Bergamini, Luca; Porrello, Angelo; Del Negro, Ercole; Capobianco Dondona, Andrea; Di Tondo, Francesco; Calderara, Simone

Sistema in grado di rilevare le lesioni delle mezzene al macello attraverso l'utilizzo di tecniche di deep learning per individuazioni … (Read full abstract)

Sistema in grado di rilevare le lesioni delle mezzene al macello attraverso l'utilizzo di tecniche di deep learning per individuazioni del tipo di lesioni presenti

2019 Brevetto

Predicting the Driver's Focus of Attention: the DR(eye)VE Project

Authors: Palazzi, Andrea; Abati, Davide; Calderara, Simone; Solera, Francesco; Cucchiara, Rita

Published in: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Predicting the Driver's Focus of Attention: the DR(eye)VE Project Andrea Palazzi, Davide Abati, Simone Calderara, Francesco Solera, Rita Cucchiara (Submitted … (Read full abstract)

Predicting the Driver's Focus of Attention: the DR(eye)VE Project Andrea Palazzi, Davide Abati, Simone Calderara, Francesco Solera, Rita Cucchiara (Submitted on 10 May 2017 (v1), last revised 6 Jun 2018 (this version, v3)) In this work we aim to predict the driver's focus of attention. The goal is to estimate what a person would pay attention to while driving, and which part of the scene around the vehicle is more critical for the task. To this end we propose a new computer vision model based on a multi-branch deep architecture that integrates three sources of information: raw video, motion and scene semantics. We also introduce DR(eye)VE, the largest dataset of driving scenes for which eye-tracking annotations are available. This dataset features more than 500,000 registered frames, matching ego-centric views (from glasses worn by drivers) and car-centric views (from roof-mounted camera), further enriched by other sensors measurements. Results highlight that several attention patterns are shared across drivers and can be reproduced to some extent. The indication of which elements in the scene are likely to capture the driver's attention may benefit several applications in the context of human-vehicle interaction and driver attention analysis.

2019 Articolo su rivista

Page 8 of 16 • Total publications: 155