Publications by Simone Calderara

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Simone Calderara

Catastrophic Forgetting in Continual Concept Bottleneck Models

Authors: Marconato, E.; Bontempo, G.; Teso, S.; Ficarra, E.; Calderara, S.; Passerini, A.

Published in: LECTURE NOTES IN COMPUTER SCIENCE

2022 Relazione in Atti di Convegno

Continual semi-supervised learning through contrastive interpolation consistency

Authors: Boschini, Matteo; Buzzega, Pietro; Bonicelli, Lorenzo; Porrello, Angelo; Calderara, Simone

Published in: PATTERN RECOGNITION LETTERS

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed … (Read full abstract)

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed in literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes infeasible when data flow as a stream. This work explores Continual Semi-Supervised Learning (CSSL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, where overfitting entangles forgetting. Subsequently, we design a novel CSSL method that exploits metric learning and consistency regularization to leverage unlabeled examples while learning. We show that our proposal exhibits higher resilience to diminishing supervision and, even more surprisingly, relying only on supervision suffices to outperform SOTA methods trained under full supervision.

2022 Articolo su rivista

Effects of Auxiliary Knowledge on Continual Learning

Authors: Bellitto, Giovanni; Pennisi, Matteo; Palazzo, Simone; Bonicelli, Lorenzo; Boschini, Matteo; Calderara, Simone; Spampinato, Concetto

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

In Continual Learning (CL), a neural network is trained on a stream of data whose distribution changes over time. In … (Read full abstract)

In Continual Learning (CL), a neural network is trained on a stream of data whose distribution changes over time. In this context, the main problem is how to learn new information without forgetting old knowledge (i.e., Catastrophic Forgetting). Most existing CL approaches focus on finding solutions to preserve acquired knowledge, so working on the past of the model. However, we argue that as the model has to continually learn new tasks, it is also important to put focus on the present knowledge that could improve following tasks learning. In this paper we propose a new, simple, CL algorithm that focuses on solving the current task in a way that might facilitate the learning of the next ones. More specifically, our approach combines the main data stream with a secondary, diverse and uncorrelated stream, from which the network can draw auxiliary knowledge. This helps the model from different perspectives, since auxiliary data may contain useful features for the current and the next tasks and incoming task classes can be mapped onto auxiliary classes. Furthermore, the addition of data to the current task is implicitly making the classifier more robust as we are forcing the extraction of more discriminative features. Our method can outperform existing state-of-the-art models on the most common CL Image Classification benchmarks.

2022 Relazione in Atti di Convegno

First Steps Towards 3D Pedestrian Detection and Tracking from Single Image

Authors: Mancusi, G.; Fabbri, M.; Egidi, S.; Verasani, M.; Scarabelli, P.; Calderara, S.; Cucchiara, R.

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Since decades, the problem of multiple people tracking has been tackled leveraging 2D data only. However, people moves and interact … (Read full abstract)

Since decades, the problem of multiple people tracking has been tackled leveraging 2D data only. However, people moves and interact in a three-dimensional space. For this reason, using only 2D data might be limiting and overly challenging, especially due to occlusions and multiple overlapping people. In this paper, we take advantage of 3D synthetic data from the novel MOTSynth dataset, to train our proposed 3D people detector, whose observations are fed to a tracker that works in the corresponding 3D space. Compared to conventional 2D trackers, we show an overall improvement in performance with a reduction of identity switches on both real and synthetic data. Additionally, we propose a tracker that jointly exploits 3D and 2D data, showing an improvement over the proposed baselines. Our experiments demonstrate that 3D data can be beneficial, and we believe this paper will pave the road for future efforts in leveraging 3D data for tackling multiple people tracking. The code is available at (https://github.com/GianlucaMancusi/LoCO-Det ).

2022 Relazione in Atti di Convegno

How many Observations are Enough? Knowledge Distillation for Trajectory Forecasting

Authors: Monti, A.; Porrello, A.; Calderara, S.; Coscia, P.; Ballan, L.; Cucchiara, R.

Accurate prediction of future human positions is an essential task for modern video-surveillance systems. Current state-of-the-art models usually rely on … (Read full abstract)

Accurate prediction of future human positions is an essential task for modern video-surveillance systems. Current state-of-the-art models usually rely on a "history" of past tracked locations (e.g., 3 to 5 seconds) to predict a plausible sequence of future locations (e.g., up to the next 5 seconds). We feel that this common schema neglects critical traits of realistic applications: as the collection of input trajectories involves machine perception (i.e., detection and tracking), incorrect detection and fragmentation errors may accumulate in crowded scenes, leading to tracking drifts. On this account, the model would be fed with corrupted and noisy input data, thus fatally affecting its prediction performance.In this regard, we focus on delivering accurate predictions when only few input observations are used, thus potentially lowering the risks associated with automatic perception. To this end, we conceive a novel distillation strategy that allows a knowledge transfer from a teacher network to a student one, the latter fed with fewer observations (just two ones). We show that a properly defined teacher supervision allows a student network to perform comparably to state-of-the-art approaches that demand more observations. Besides, extensive experiments on common trajectory forecasting datasets highlight that our student network better generalizes to unseen scenarios.

2022 Relazione in Atti di Convegno

Learning the Quality of Machine Permutations in Job Shop Scheduling

Authors: Corsini, A.; Calderara, S.; Dell'Amico, M.

Published in: IEEE ACCESS

In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted the interest of the optimization community that … (Read full abstract)

In recent years, the power demonstrated by Machine Learning (ML) has increasingly attracted the interest of the optimization community that is starting to leverage ML for enhancing and automating the design of algorithms. One combinatorial optimization problem recently tackled with ML is the Job Shop scheduling Problem (JSP). Most of the works on the JSP using ML focus on Deep Reinforcement Learning (DRL), and only a few of them leverage supervised learning techniques. The recurrent reasons for avoiding supervised learning seem to be the difficulty in casting the right learning task, i.e., what is meaningful to predict, and how to obtain labels. Therefore, we first propose a novel supervised learning task that aims at predicting the quality of machine permutations. Then, we design an original methodology to estimate this quality, and we use these estimations to create an accurate sequential deep learning model (binary accuracy above 95%). Finally, we empirically demonstrate the value of predicting the quality of machine permutations by enhancing the performance of a simple Tabu Search algorithm inspired by the works in the literature.

2022 Articolo su rivista

On the Effectiveness of Lipschitz-Driven Rehearsal in Continual Learning

Authors: Bonicelli, Lorenzo; Boschini, Matteo; Porrello, Angelo; Spampinato, Concetto; Calderara, Simone

Published in: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS

Rehearsal approaches enjoy immense popularity with Continual Learning (CL) practitioners. These methods collect samples from previously encountered data distributions in … (Read full abstract)

Rehearsal approaches enjoy immense popularity with Continual Learning (CL) practitioners. These methods collect samples from previously encountered data distributions in a small memory buffer; subsequently, they repeatedly optimize on the latter to prevent catastrophic forgetting. This work draws attention to a hidden pitfall of this widespread practice: repeated optimization on a small pool of data inevitably leads to tight and unstable decision boundaries, which are a major hindrance to generalization. To address this issue, we propose Lipschitz-DrivEn Rehearsal (LiDER), a surrogate objective that induces smoothness in the backbone network by constraining its layer-wise Lipschitz constants w.r.t. replay examples. By means of extensive experiments, we show that applying LiDER delivers a stable performance gain to several state-of-the-art rehearsal CL methods across multiple datasets, both in the presence and absence of pre-training. Through additional ablative experiments, we highlight peculiar aspects of buffer overfitting in CL and better characterize the effect produced by LiDER. Code is available at https://github.com/aimagelab/LiDER

2022 Relazione in Atti di Convegno

SeeFar: Vehicle Speed Estimation and Flow Analysis from a Moving UAV

Authors: Ning, M.; Ma, X.; Lu, Y.; Calderara, S.; Cucchiara, R.

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Visual perception from drones has been largely investigated for Intelligent Traffic Monitoring System (ITMS) recently. In this paper, we introduce … (Read full abstract)

Visual perception from drones has been largely investigated for Intelligent Traffic Monitoring System (ITMS) recently. In this paper, we introduce SeeFar to achieve vehicle speed estimation and traffic flow analysis based on YOLOv5 and DeepSORT from a moving drone. SeeFar differs from previous works in three key ways: the speed estimation and flow analysis components are integrated into a unified framework; our method of predicting car speed has the least constraints while maintaining a high accuracy; our flow analysor is direction-aware and outlier-aware. Specifically, we design the speed estimator only using the camera imaging geometry, where the transformation between world space and image space is completed by the variable Ground Sampling Distance. Besides, previous papers do not evaluate their speed estimators at scale due to the difficulty of obtaining the ground truth, we therefore propose a simple yet efficient approach to estimate the true speeds of vehicles via the prior size of the road signs. We evaluate SeeFar on our ten videos that contain 929 vehicle samples. Experiments on these sequences demonstrate the effectiveness of SeeFar by achieving 98.0% accuracy of speed estimation and 99.1% accuracy of traffic volume prediction, respectively.

2022 Relazione in Atti di Convegno

Transfer without Forgetting

Authors: Boschini, Matteo; Bonicelli, Lorenzo; Porrello, Angelo; Bellitto, Giovanni; Pennisi, Matteo; Palazzo, Simone; Spampinato, Concetto; Calderara, Simone

Published in: LECTURE NOTES IN COMPUTER SCIENCE

This work investigates the entanglement between Continual Learning (CL) and Transfer Learning (TL). In particular, we shed light on the … (Read full abstract)

This work investigates the entanglement between Continual Learning (CL) and Transfer Learning (TL). In particular, we shed light on the widespread application of network pretraining, highlighting that it is itself subject to catastrophic forgetting. Unfortunately, this issue leads to the under-exploitation of knowledge transfer during later tasks. On this ground, we propose Transfer without Forgetting (TwF), a hybrid Continual Transfer Learning approach building upon a fixed pretrained sibling network, which continuously propagates the knowledge inherent in the source domain through a layer-wise loss term. Our experiments indicate that TwF steadily outperforms other CL methods across a variety of settings, averaging a 4.81% gain in Class-Incremental accuracy over a variety of datasets and different buffer sizes.

2022 Relazione in Atti di Convegno

Warp and Learn: Novel Views Generation for Vehicles and Other Objects

Authors: Palazzi, Andrea; Bergamini, Luca; Calderara, Simone; Cucchiara, Rita

Published in: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

In this work we introduce a new self-supervised, semi-parametric approach for synthesizing novel views of a vehicle starting from a … (Read full abstract)

In this work we introduce a new self-supervised, semi-parametric approach for synthesizing novel views of a vehicle starting from a single monocular image.Differently from parametric (i.e. entirely learning-based) methods, we show how a-priori geometric knowledge about the object and the 3D world can be successfully integrated into a deep learning based image generation framework. As this geometric component is not learnt, we call our approach semi-parametric.In particular, we exploit man-made object symmetry and piece-wise planarity to integrate rich a-priori visual information into the novel viewpoint synthesis process. An Image Completion Network (ICN) is then trained to generate a realistic image starting from this geometric guidance.This blend between parametric and non-parametric components allows us to i) operate in a real-world scenario, ii) preserve high-frequency visual information such as textures, iii) handle truly arbitrary 3D roto-translations of the input and iv) perform shape transfer to completely different 3D models. Eventually, we show that our approach can be easily complemented with synthetic data and extended to other rigid objects with completely different topology, even in presence of concave structures and holes.A comprehensive experimental analysis against state-of-the-art competitors shows the efficacy of our method both from a quantitative and a perceptive point of view.

2022 Articolo su rivista

Page 5 of 16 • Total publications: 155