Publications by Simone Calderara

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Simone Calderara

Class-Incremental Continual Learning into the eXtended DER-verse

Authors: Boschini, Matteo; Bonicelli, Lorenzo; Buzzega, Pietro; Porrello, Angelo; Calderara, Simone

Published in: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks … (Read full abstract)

The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub-field of Class-Incremental Continual Learning fosters methods that learn a sequence of tasks incrementally, blending sequentially-gained knowledge into a comprehensive prediction. This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER), a simple and effective approach that combines rehearsal and Knowledge Distillation. Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data ii) pave the way for learning yet unseen classes. We show that the application of these strategies leads to remarkable improvements; indeed, the resulting method – termed eXtended-DER (X-DER) – outperforms the state of the art on both standard benchmarks (such as CIFAR-100 and miniImageNet) and a novel one here introduced. To gain a better understanding, we further provide extensive ablation studies that corroborate and extend the findings of our previous research (e.g. the value of Knowledge Distillation and flatter minima in continual learning setups). We make our results fully reproducible; the codebase is available at https://github.com/aimagelab/mammoth.

2023 Articolo su rivista

Consistency-Based Self-supervised Learning for Temporal Anomaly Localization

Authors: Panariello, A.; Porrello, A.; Calderara, S.; Cucchiara, R.

Published in: LECTURE NOTES IN COMPUTER SCIENCE

2023 Relazione in Atti di Convegno

DAS-MIL: Distilling Across Scales for MILClassification of Histological WSIs

Authors: Bontempo, Gianpaolo; Porrello, Angelo; Bolelli, Federico; Calderara, Simone; Ficarra, Elisa

Published in: LECTURE NOTES IN COMPUTER SCIENCE

The adoption of Multi-Instance Learning (MIL) for classifying Whole-Slide Images (WSIs) has increased in recent years. Indeed, pixel-level annotation of … (Read full abstract)

The adoption of Multi-Instance Learning (MIL) for classifying Whole-Slide Images (WSIs) has increased in recent years. Indeed, pixel-level annotation of gigapixel WSI is mostly unfeasible and time-consuming in practice. For this reason, MIL approaches have been profitably integrated with the most recent deep-learning solutions for WSI classification to support clinical practice and diagnosis. Nevertheless, the majority of such approaches overlook the multi-scale nature of the WSIs; the few existing hierarchical MIL proposals simply flatten the multi-scale representations by concatenation or summation of features vectors, neglecting the spatial structure of the WSI. Our work aims to unleash the full potential of pyramidal structured WSI; to do so, we propose a graph-based multi-scale MIL approach, termed DAS-MIL, that exploits message passing to let information flows across multiple scales. By means of a knowledge distillation schema, the alignment between the latent space representation at different resolutions is encouraged while preserving the diversity in the informative content. The effectiveness of the proposed framework is demonstrated on two well-known datasets, where we outperform SOTA on WSI classification, gaining a +1.9% AUC and +3.3¬curacy on the popular Camelyon16 benchmark.

2023 Relazione in Atti di Convegno

Input Perturbation Reduces Exposure Bias in Diffusion Models

Authors: Ning, M.; Sangineto, E.; Porrello, A.; Calderara, S.; Cucchiara, R.

Published in: PROCEEDINGS OF MACHINE LEARNING RESEARCH

Denoising Diffusion Probabilistic Models have shown an impressive generation quality although their long sampling chain leads to high computational costs. … (Read full abstract)

Denoising Diffusion Probabilistic Models have shown an impressive generation quality although their long sampling chain leads to high computational costs. In this paper, we observe that a long sampling chain also leads to an error accumulation phenomenon, which is similar to the exposure bias problem in autoregressive text generation. Specifically, we note that there is a discrepancy between training and testing, since the former is conditioned on the ground truth samples, while the latter is conditioned on the previously generated results. To alleviate this problem, we propose a very simple but effective training regularization, consisting in perturbing the ground truth samples to simulate the inference time prediction errors. We empirically show that, without affecting the recall and precision, the proposed input perturbation leads to a significant improvement in the sample quality while reducing both the training and the inference times. For instance, on CelebA 64×64, we achieve a new state-of-the-art FID score of 1.27, while saving 37.5% of the training time. The code is available at https://github.com/forever208/DDPM-IP.

2023 Relazione in Atti di Convegno

Let's stay close: An examination of the effects of imagined contact on behavior toward children with disability

Authors: Cocco, V. M.; Bisagno, E.; Bernardo, G. A. D.; Bicocchi, N.; Calderara, S.; Palazzi, A.; Cucchiara, R.; Zambonelli, F.; Cadamuro, A.; Stathi, S.; Crisp, R.; Vezzali, L.

Published in: SOCIAL DEVELOPMENT

In line with current developments in indirect intergroup contact literature, we conducted a field study using the imagined contact paradigm … (Read full abstract)

In line with current developments in indirect intergroup contact literature, we conducted a field study using the imagined contact paradigm among high-status (Italian children) and low-status (children with foreign origins) group members (N = 122; 53 females, mean age = 7.52 years). The experiment aimed to improve attitudes and behavior toward a different low-status group, children with disability. To assess behavior, we focused on an objective measure that captures the physical distance between participants and a child with disability over the course of a five-minute interaction (i.e., while playing together). Results from a 3-week intervention revealed that in the case of high-status children imagined contact, relative to a no-intervention control condition, improved outgroup attitudes and behavior, and strengthened helping and contact intentions. These effects however did not emerge among low-status children. The results are discussed in the context of intergroup contact literature, with emphasis on the implications of imagined contact for educational settings.

2023 Articolo su rivista

Neuro Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal

Authors: Marconato, Emanuele; Bontempo, Gianpaolo; Ficarra, Elisa; Calderara, Simone; Passerini, Andrea; Teso, Stefano

2023 Working paper

Neuro-Symbolic Continual Learning: Knowledge, Reasoning Shortcuts and Concept Rehearsal

Authors: Marconato, E.; Bontempo, G.; Ficarra, E.; Calderara, S.; Passerini, A.; Teso, S.

Published in: PROCEEDINGS OF MACHINE LEARNING RESEARCH

We introduce Neuro-Symbolic Continual Learning, where a model has to solve a sequence of neuro-symbolic tasks, that is, it has … (Read full abstract)

We introduce Neuro-Symbolic Continual Learning, where a model has to solve a sequence of neuro-symbolic tasks, that is, it has to map sub-symbolic inputs to high-level concepts and compute predictions by reasoning consistently with prior knowledge. Our key observation is that neuro-symbolic tasks, although different, often share concepts whose semantics remains stable over time. Traditional approaches fall short: existing continual strategies ignore knowledge altogether, while stock neuro-symbolic architectures suffer from catastrophic forgetting. We show that leveraging prior knowledge by combining neurosymbolic architectures with continual strategies does help avoid catastrophic forgetting, but also that doing so can yield models affected by reasoning shortcuts. These undermine the semantics of the acquired concepts, even when detailed prior knowledge is provided upfront and inference is exact, and in turn continual performance. To overcome these issues, we introduce COOL, a COncept-level cOntinual Learning strategy tailored for neuro-symbolic continual problems that acquires high-quality concepts and remembers them over time. Our experiments on three novel benchmarks highlights how COOL attains sustained high performance on neuro-symbolic continual learning tasks in which other strategies fail.

2023 Relazione in Atti di Convegno

Novel continual learning techniques on noisy label datasets

Authors: Millunzi, M.; Bonicelli, L.; Zurli, A.; Salman, A.; Credi, J.; Calderara, S.

Published in: CEUR WORKSHOP PROCEEDINGS

Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of … (Read full abstract)

Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose benchmark datasets consist of reliable data. However, they often struggle to handle realistic scenarios, particularly those in the financial sector, where available data constantly vary, increase daily, and may contain noise. As a result, we present an overview of the ongoing research at the AImageLab research laboratory of the University of Modena and Reggio Emilia, in collaboration with AxyonAI, focused on exploring Continual Learning methods in the presence of noisy data, with a special focus on noisy labels. To the best of our knowledge, this is a problem that has received limited attention from the scientific community thus far.

2023 Relazione in Atti di Convegno

Spotting Virus from Satellites: Modeling the Circulation of West Nile Virus Through Graph Neural Networks

Authors: Bonicelli, Lorenzo; Porrello, Angelo; Vincenzi, Stefano; Ippoliti, Carla; Iapaolo, Federica; Conte, Annamaria; Calderara, Simone

Published in: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

2023 Articolo su rivista

TrackFlow: Multi-Object Tracking with Normalizing Flows

Authors: Mancusi, Gianluca; Panariello, Aniello; Porrello, Angelo; Fabbri, Matteo; Calderara, Simone; Cucchiara, Rita

Published in: PROCEEDINGS IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION

The field of multi-object tracking has recently seen a renewed interest in the good old schema of tracking-by-detection, as its … (Read full abstract)

The field of multi-object tracking has recently seen a renewed interest in the good old schema of tracking-by-detection, as its simplicity and strong priors spare it from the complex design and painful babysitting of tracking-by-attention approaches. In view of this, we aim at extending tracking-by-detection to multi-modal settings, where a comprehensive cost has to be computed from heterogeneous information e.g., 2D motion cues, visual appearance, and pose estimates. More precisely, we follow a case study where a rough estimate of 3D information is also available and must be merged with other traditional metrics (e.g., the IoU). To achieve that, recent approaches resort to either simple rules or complex heuristics to balance the contribution of each cost. However, i) they require careful tuning of tailored hyperparameters on a hold-out set, and ii) they imply these costs to be independent, which does not hold in reality. We address these issues by building upon an elegant probabilistic formulation, which considers the cost of a candidate association as the negative log-likelihood yielded by a deep density estimator, trained to model the conditional joint probability distribution of correct associations. Our experiments, conducted on both simulated and real benchmarks, show that our approach consistently enhances the performance of several tracking-by-detection algorithms.

2023 Relazione in Atti di Convegno

Page 4 of 16 • Total publications: 155