Publications by Pietro Buzzega

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Pietro Buzzega

A Second-Order Perspective on Model Compositionality and Incremental Learning

Authors: Porrello, Angelo; Bonicelli, Lorenzo; Buzzega, Pietro; Millunzi, Monica; Calderara, Simone; Cucchiara, Rita

2025 Relazione in Atti di Convegno

CLOSED-FORM MERGING OF PARAMETER-EFFICIENT MODULES FOR FEDERATED CONTINUAL LEARNING

Authors: Salami, R.; Buzzega, P.; Mosconi, M.; Bonato, J.; Sabetta, L.; Calderara, S.

Model merging has emerged as a crucial technique in Deep Learning, enabling the integration of multiple models into a unified … (Read full abstract)

Model merging has emerged as a crucial technique in Deep Learning, enabling the integration of multiple models into a unified system while preserving performance and scalability. In this respect, the compositional properties of low-rank adaptation techniques (e.g., LoRA) have proven beneficial, as simple averaging LoRA modules yields a single model that mostly integrates the capabilities of all individual modules. Building on LoRA, we take a step further by imposing that the merged model matches the responses of all learned modules. Solving this objective in closed form yields an indeterminate system with A and B as unknown variables, indicating the existence of infinitely many closed-form solutions. To address this challenge, we introduce LoRM, an alternating optimization strategy that trains one LoRA matrix at a time. This allows solving for each unknown variable individually, thus finding a unique solution. We apply our proposed methodology to Federated Class-Incremental Learning (FCIL), ensuring alignment of model responses both between clients and across tasks. Our method demonstrates state-of-the-art performance across a range of FCIL scenarios. The code to reproduce our experiments is available at this http URL.

2025 Relazione in Atti di Convegno

Intrinsic Training Signals for Federated Learning Aggregation

Authors: Fiorini, Cosimo; Mosconi, Matteo; Buzzega, Pietro; Salami, Riccardo; Calderara, Simone

Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific … (Read full abstract)

Federated Learning (FL) enables collaborative model training across distributed clients while preserving data privacy. While existing approaches for aggregating client-specific classification heads and adapted backbone parameters require architectural modifications or loss function changes, our method uniquely leverages intrinsic training signals already available during standard optimization. We present LIVAR (Layer Importance and VARiance-based merging), which introduces: i) a variance-weighted classifier aggregation scheme using naturally emergent feature statistics, and ii) an explainability-driven LoRA merging technique based on SHAP analysis of existing update parameter patterns. Without any architectural overhead, LIVAR achieves state-of-the-art performance on multiple benchmarks while maintaining seamless integration with existing FL methods. This work demonstrates that effective model merging can be achieved solely through existing training signals, establishing a new paradigm for efficient federated model aggregation. The code is available at https://github.com/aimagelab/fed-mammoth

2025 Relazione in Atti di Convegno

Modular embedding recomposition for incremental learning

Authors: Panariello, Aniello; Frascaroli, Emanuele; Buzzega, Pietro; Bonicelli, Lorenzo; Porrello, Angelo; Calderara, Simone

2025 Relazione in Atti di Convegno

Trajectory Forecasting Through Low-Rank Adaptation of Discrete Latent Codes

Authors: Benaglia, R.; Porrello, A.; Buzzega, P.; Calderara, S.; Cucchiara, R.

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of … (Read full abstract)

Trajectory forecasting is crucial for video surveillance analytics, as it enables the anticipation of future movements for a set of agents, e.g., basketball players engaged in intricate interactions with long-term intentions. Deep generative models offer a natural learning approach for trajectory forecasting, yet they encounter difficulties in achieving an optimal balance between sampling fidelity and diversity. We address this challenge by leveraging Vector Quantized Variational Autoencoders (VQ-VAEs), which utilize a discrete latent space to tackle the issue of posterior collapse. Specifically, we introduce an instance-based codebook that allows tailored latent representations for each example. In a nutshell, the rows of the codebook are dynamically adjusted to reflect contextual information (i.e., past motion patterns extracted from the observed trajectories). In this way, the discretization process gains flexibility, leading to improved reconstructions. Notably, instance-level dynamics are injected into the codebook through low-rank updates, which restrict the customization of the codebook to a lower dimension space. The resulting discrete space serves as the basis of the subsequent step, which regards the training of a diffusion-based predictive model. We show that such a two-fold framework, augmented with instance-level discretization, leads to accurate and diverse forecasts, yielding state-of-the-art performance on three established benchmarks.

2025 Relazione in Atti di Convegno

CLIP with Generative Latent Replay: a Strong Baseline for Incremental Learning

Authors: Frascaroli, Emanuele; Panariello, Aniello; Buzzega, Pietro; Bonicelli, Lorenzo; Porrello, Angelo; Calderara, Simone

With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, fine-tuning large pre-trained models has recently become a … (Read full abstract)

With the emergence of Transformers and Vision-Language Models (VLMs) such as CLIP, fine-tuning large pre-trained models has recently become a prevalent strategy in Continual Learning. This has led to the development of numerous prompting strategies to adapt transformer-based models without incurring catastrophic forgetting. However, these strategies often compromise the original zero-shot capabilities of the pre-trained CLIP model and struggle to adapt to domains that significantly deviate from the pre-training data. In this work, we propose Continual Generative training for Incremental prompt-Learning, a simple and novel approach to mitigate forgetting while adapting CLIP. Briefly, we employ Variational Autoencoders (VAEs) to learn class-conditioned distributions within the embedding space of the visual encoder. We then exploit these distributions to sample new synthetic visual embeddings and train the corresponding class-specific textual prompts during subsequent tasks. Through extensive experiments on different domains, we show that such a generative replay approach can adapt to new tasks while improving zero-shot capabilities, evaluated using a novel metric tailored for CL scenarios. Notably, further analysis reveals that our approach can bridge the gap with joint prompt tuning. The codebase is available at https://github.com/aimagelab/mammoth.

2024 Relazione in Atti di Convegno

Class-Incremental Continual Learning into the eXtended DER-verse

Authors: Boschini, Matteo; Bonicelli, Lorenzo; Buzzega, Pietro; Porrello, Angelo; Calderara, Simone

Published in: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks … (Read full abstract)

The staple of human intelligence is the capability of acquiring knowledge in a continuous fashion. In stark contrast, Deep Networks forget catastrophically and, for this reason, the sub-field of Class-Incremental Continual Learning fosters methods that learn a sequence of tasks incrementally, blending sequentially-gained knowledge into a comprehensive prediction. This work aims at assessing and overcoming the pitfalls of our previous proposal Dark Experience Replay (DER), a simple and effective approach that combines rehearsal and Knowledge Distillation. Inspired by the way our minds constantly rewrite past recollections and set expectations for the future, we endow our model with the abilities to i) revise its replay memory to welcome novel information regarding past data ii) pave the way for learning yet unseen classes. We show that the application of these strategies leads to remarkable improvements; indeed, the resulting method – termed eXtended-DER (X-DER) – outperforms the state of the art on both standard benchmarks (such as CIFAR-100 and miniImageNet) and a novel one here introduced. To gain a better understanding, we further provide extensive ablation studies that corroborate and extend the findings of our previous research (e.g. the value of Knowledge Distillation and flatter minima in continual learning setups). We make our results fully reproducible; the codebase is available at https://github.com/aimagelab/mammoth.

2023 Articolo su rivista

Continual semi-supervised learning through contrastive interpolation consistency

Authors: Boschini, Matteo; Buzzega, Pietro; Bonicelli, Lorenzo; Porrello, Angelo; Calderara, Simone

Published in: PATTERN RECOGNITION LETTERS

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed … (Read full abstract)

Continual Learning (CL) investigates how to train Deep Networks on a stream of tasks without incurring forgetting. CL settings proposed in literature assume that every incoming example is paired with ground-truth annotations. However, this clashes with many real-world applications: gathering labeled data, which is in itself tedious and expensive, becomes infeasible when data flow as a stream. This work explores Continual Semi-Supervised Learning (CSSL): here, only a small fraction of labeled input examples are shown to the learner. We assess how current CL methods (e.g.: EWC, LwF, iCaRL, ER, GDumb, DER) perform in this novel and challenging scenario, where overfitting entangles forgetting. Subsequently, we design a novel CSSL method that exploits metric learning and consistency regularization to leverage unlabeled examples while learning. We show that our proposal exhibits higher resilience to diminishing supervision and, even more surprisingly, relying only on supervision suffices to outperform SOTA methods trained under full supervision.

2022 Articolo su rivista

The color out of space: learning self-supervised representations for Earth Observation imagery

Authors: Vincenzi, Stefano; Porrello, Angelo; Buzzega, Pietro; Cipriano, Marco; Fronte, Pietro; Cuccu, Roberto; Ippoliti, Carla; Conte, Annamaria; Calderara, Simone

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). … (Read full abstract)

The recent growth in the number of satellite images fosters the development of effective deep-learning techniques for Remote Sensing (RS). However, their full potential is untapped due to the lack of large annotated datasets. Such a problem is usually countered by fine-tuning a feature extractor that is previously trained on the ImageNet dataset. Unfortunately, the domain of natural images differs from the RS one, which hinders the final performance. In this work, we propose to learn meaningful representations from satellite imagery, leveraging its high-dimensionality spectral bands to reconstruct the visible colors. We conduct experiments on land cover classification (BigEarthNet) and West Nile Virus detection, showing that colorization is a solid pretext task for training a feature extractor. Furthermore, we qualitatively observe that guesses based on natural images and colorization rely on different parts of the input. This paves the way to an ensemble model that eventually outperforms both the above-mentioned techniques.

2021 Relazione in Atti di Convegno

Dark Experience for General Continual Learning: a Strong, Simple Baseline

Authors: Buzzega, Pietro; Boschini, Matteo; Porrello, Angelo; Abati, Davide; Calderara, Simone

Published in: ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS

Continual Learning has inspired a plethora of approaches and evaluation settings; however, the majority of them overlooks the properties of … (Read full abstract)

Continual Learning has inspired a plethora of approaches and evaluation settings; however, the majority of them overlooks the properties of a practical scenario, where the data stream cannot be shaped as a sequence of tasks and offline training is not viable. We work towards General Continual Learning (GCL), where task boundaries blur and the domain and class distributions shift either gradually or suddenly. We address it through mixing rehearsal with knowledge distillation and regularization; our simple baseline, Dark Experience Replay, matches the network's logits sampled throughout the optimization trajectory, thus promoting consistency with its past. By conducting an extensive analysis on both standard benchmarks and a novel GCL evaluation setting (MNIST-360), we show that such a seemingly simple baseline outperforms consolidated approaches and leverages limited resources. We further explore the generalization capabilities of our objective, showing its regularization being beneficial beyond mere performance.

2020 Relazione in Atti di Convegno

Page 1 of 2 • Total publications: 12