Publications by Marcella Cornia

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Marcella Cornia

Transform, Warp, and Dress: A New Transformation-Guided Model for Virtual Try-On

Authors: Fincato, Matteo; Cornia, Marcella; Landi, Federico; Cesari, Fabio; Cucchiara, Rita

Published in: ACM TRANSACTIONS ON MULTIMEDIA COMPUTING, COMMUNICATIONS AND APPLICATIONS

Virtual try-on has recently emerged in computer vision and multimedia communities with the development of architectures that can generate realistic … (Read full abstract)

Virtual try-on has recently emerged in computer vision and multimedia communities with the development of architectures that can generate realistic images of a target person wearing a custom garment. This research interest is motivated by the large role played by e-commerce and online shopping in our society. Indeed, the virtual try-on task can offer many opportunities to improve the efficiency of preparing fashion catalogs and to enhance the online user experience. The problem is far to be solved: current architectures do not reach sufficient accuracy with respect to manually generated images and can only be trained on image pairs with a limited variety. Existing virtual try-on datasets have two main limits: they contain only female models, and all the images are available only in low resolution. This not only affects the generalization capabilities of the trained architectures but makes the deployment to real applications impractical. To overcome these issues, we present Dress Code, a new dataset for virtual try-on that contains high-resolution images of a large variety of upper-body clothes and both male and female models. Leveraging this enriched dataset, we propose a new model for virtual try-on capable of generating high-quality and photo-realistic images using a three-stage pipeline. The first two stages perform two different geometric transformations to warp the desired garment and make it fit into the target person's body pose and shape. Then, we generate the new image of that same person wearing the try-on garment using a generative network. We test the proposed solution on the most widely used dataset for this task as well as on our newly collected dataset and demonstrate its effectiveness when compared to current state-of-the-art methods. Through extensive analyses on our Dress Code dataset, we show the adaptability of our model, which can generate try-on images even with a higher resolution.

2022 Articolo su rivista

A Novel Attention-based Aggregation Function to Combine Vision and Language

Authors: Stefanini, Matteo; Cornia, Marcella; Baraldi, Lorenzo; Cucchiara, Rita

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision … (Read full abstract)

The joint understanding of vision and language has been recently gaining a lot of attention in both the Computer Vision and Natural Language Processing communities, with the emergence of tasks such as image captioning, image-text matching, and visual question answering. As both images and text can be encoded as sets or sequences of elements - like regions and words - proper reduction functions are needed to transform a set of encoded elements into a single response, like a classification or similarity score. In this paper, we propose a novel fully-attentive reduction method for vision and language. Specifically, our approach computes a set of scores for each element of each modality employing a novel variant of cross-attention, and performs a learnable and cross-modal reduction, which can be used for both classification and ranking. We test our approach on image-text matching and visual question answering, building fair comparisons with other reduction choices, on both COCO and VQA 2.0 datasets. Experimentally, we demonstrate that our approach leads to a performance increase on both tasks. Further, we conduct ablation studies to validate the role of each component of the approach.

2021 Relazione in Atti di Convegno

Explore and Explain: Self-supervised Navigation and Recounting

Authors: Bigazzi, Roberto; Landi, Federico; Cornia, Marcella; Cascianelli, Silvia; Baraldi, Lorenzo; Cucchiara, Rita

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In … (Read full abstract)

Embodied AI has been recently gaining attention as it aims to foster the development of autonomous and intelligent agents. In this paper, we devise a novel embodied setting in which an agent needs to explore a previously unknown environment while recounting what it sees during the path. In this context, the agent needs to navigate the environment driven by an exploration goal, select proper moments for description, and output natural language descriptions of relevant objects and scenes. Our model integrates a novel self-supervised exploration module with penalty, and a fully-attentive captioning model for explanation. Also, we investigate different policies for selecting proper moments for explanation, driven by information coming from both the environment and the navigation. Experiments are conducted on photorealistic environments from the Matterport3D dataset and investigate the navigation and explanation capabilities of the agent as well as the role of their interactions.

2021 Relazione in Atti di Convegno

FashionSearch++: Improving Consumer-to-Shop Clothes Retrieval with Hard Negatives

Authors: Morelli, Davide; Cornia, Marcella; Cucchiara, Rita

Published in: CEUR WORKSHOP PROCEEDINGS

Consumer-to-shop clothes retrieval has recently emerged in computer vision and multimedia communities with the development of architectures that can find … (Read full abstract)

Consumer-to-shop clothes retrieval has recently emerged in computer vision and multimedia communities with the development of architectures that can find similar in-shop clothing images given a query photo. Due to its nature, the main challenge lies in the domain gap between user-acquired and in-shop images. In this paper, we follow the most recent successful research in this area employing convolutional neural networks as feature extractors and propose to enhance the training supervision through a modified triplet loss that takes into account hard negative examples. We test the proposed approach on the Street2Shop dataset, achieving results comparable to state-of-the-art solutions and demonstrating good generalization properties when dealing with different settings and clothing categories.

2021 Relazione in Atti di Convegno

Learning to Read L'Infinito: Handwritten Text Recognition with Synthetic Training Data

Authors: Cascianelli, Silvia; Cornia, Marcella; Baraldi, Lorenzo; Piazzi, Maria Ludovica; Schiuma, Rosiana; Cucchiara, Rita

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Deep learning-based approaches to Handwritten Text Recognition (HTR) have shown remarkable results on publicly available large datasets, both modern and … (Read full abstract)

Deep learning-based approaches to Handwritten Text Recognition (HTR) have shown remarkable results on publicly available large datasets, both modern and historical. However, it is often the case that historical manuscripts are preserved in small collections, most of the time with unique characteristics in terms of paper support, author handwriting style, and language. State-of-the-art HTR approaches struggle to obtain good performance on such small manuscript collections, for which few training samples are available. In this paper, we focus on HTR on small historical datasets and propose a new historical dataset, which we call Leopardi, with the typical characteristics of small manuscript collections, consisting of letters by the poet Giacomo Leopardi, and devise strategies to deal with the training data scarcity scenario. In particular, we explore the use of carefully designed but cost-effective synthetic data for pre-training HTR models to be applied to small single-author manuscripts. Extensive experiments validate the suitability of the proposed approach, and both the Leopardi dataset and synthetic data will be available to favor further research in this direction.

2021 Relazione in Atti di Convegno

Learning to Select: A Fully Attentive Approach for Novel Object Captioning

Authors: Cagrandi, Marco; Cornia, Marcella; Stefanini, Matteo; Baraldi, Lorenzo; Cucchiara, Rita

Image captioning models have lately shown impressive results when applied to standard datasets. Switching to real-life scenarios, however, constitutes a … (Read full abstract)

Image captioning models have lately shown impressive results when applied to standard datasets. Switching to real-life scenarios, however, constitutes a challenge due to the larger variety of visual concepts which are not covered in existing training sets. For this reason, novel object captioning (NOC) has recently emerged as a paradigm to test captioning models on objects which are unseen during the training phase. In this paper, we present a novel approach for NOC that learns to select the most relevant objects of an image, regardless of their adherence to the training set, and to constrain the generative process of a language model accordingly. Our architecture is fully-attentive and end-to-end trainable, also when incorporating constraints. We perform experiments on the held-out COCO dataset, where we demonstrate improvements over the state of the art, both in terms of adaptability to novel objects and caption quality.

2021 Relazione in Atti di Convegno

Multimodal Attention Networks for Low-Level Vision-and-Language Navigation

Authors: Landi, Federico; Baraldi, Lorenzo; Cornia, Marcella; Corsini, Massimiliano; Cucchiara, Rita

Published in: COMPUTER VISION AND IMAGE UNDERSTANDING

Vision-and-Language Navigation (VLN) is a challenging task in which an agent needs to follow a language-specified path to reach a … (Read full abstract)

Vision-and-Language Navigation (VLN) is a challenging task in which an agent needs to follow a language-specified path to reach a target destination. The goal gets even harder as the actions available to the agent get simpler and move towards low-level, atomic interactions with the environment. This setting takes the name of low-level VLN. In this paper, we strive for the creation of an agent able to tackle three key issues: multi-modality, long-term dependencies, and adaptability towards different locomotive settings. To that end, we devise "Perceive, Transform, and Act" (PTA): a fully-attentive VLN architecture that leaves the recurrent approach behind and the first Transformer-like architecture incorporating three different modalities -- natural language, images, and low-level actions for the agent control. In particular, we adopt an early fusion strategy to merge lingual and visual information efficiently in our encoder. We then propose to refine the decoding phase with a late fusion extension between the agent's history of actions and the perceptual modalities. We experimentally validate our model on two datasets: PTA achieves promising results in low-level VLN on R2R and achieves good performance in the recently proposed R4R benchmark. Our code is publicly available at https://github.com/aimagelab/perceive-transform-and-act.

2021 Articolo su rivista

Out of the Box: Embodied Navigation in the Real World

Authors: Bigazzi, Roberto; Landi, Federico; Cornia, Marcella; Cascianelli, Silvia; Baraldi, Lorenzo; Cucchiara, Rita

Published in: LECTURE NOTES IN COMPUTER SCIENCE

The research field of Embodied AI has witnessed substantial progress in visual navigation and exploration thanks to powerful simulating platforms … (Read full abstract)

The research field of Embodied AI has witnessed substantial progress in visual navigation and exploration thanks to powerful simulating platforms and the availability of 3D data of indoor and photorealistic environments. These two factors have opened the doors to a new generation of intelligent agents capable of achieving nearly perfect PointGoal Navigation. However, such architectures are commonly trained with millions, if not billions, of frames and tested in simulation. Together with great enthusiasm, these results yield a question: how many researchers will effectively benefit from these advances? In this work, we detail how to transfer the knowledge acquired in simulation into the real world. To that end, we describe the architectural discrepancies that damage the Sim2Real adaptation ability of models trained on the Habitat simulator and propose a novel solution tailored towards the deployment in real-world scenarios. We then deploy our models on a LoCoBot, a Low-Cost Robot equipped with a single Intel RealSense camera. Different from previous work, our testing scene is unavailable to the agent in simulation. The environment is also inaccessible to the agent beforehand, so it cannot count on scene-specific semantic priors. In this way, we reproduce a setting in which a research group (potentially from other fields) needs to employ the agent visual navigation capabilities as-a-Service. Our experiments indicate that it is possible to achieve satisfying results when deploying the obtained model in the real world.

2021 Relazione in Atti di Convegno

Revisiting The Evaluation of Class Activation Mapping for Explainability: A Novel Metric and Experimental Analysis

Authors: Poppi, Samuele; Cornia, Marcella; Baraldi, Lorenzo; Cucchiara, Rita

Published in: IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS

As the request for deep learning solutions increases, the need for explainability is even more fundamental. In this setting, particular … (Read full abstract)

As the request for deep learning solutions increases, the need for explainability is even more fundamental. In this setting, particular attention has been given to visualization techniques, that try to attribute the right relevance to each input pixel with respect to the output of the network. In this paper, we focus on Class Activation Mapping (CAM) approaches, which provide an effective visualization by taking weighted averages of the activation maps. To enhance the evaluation and the reproducibility of such approaches, we propose a novel set of metrics to quantify explanation maps, which show better effectiveness and simplify comparisons between approaches. To evaluate the appropriateness of the proposal, we compare different CAM-based visualization methods on the entire ImageNet validation set, fostering proper comparisons and reproducibility.

2021 Relazione in Atti di Convegno

VITON-GT: An Image-based Virtual Try-On Model with Geometric Transformations

Authors: Fincato, Matteo; Landi, Federico; Cornia, Marcella; Cesari, Fabio; Cucchiara, Rita

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

The large spread of online shopping has led computer vision researchers to develop different solutions for the fashion domain to … (Read full abstract)

The large spread of online shopping has led computer vision researchers to develop different solutions for the fashion domain to potentially increase the online user experience and improve the efficiency of preparing fashion catalogs. Among them, image-based virtual try-on has recently attracted a lot of attention resulting in several architectures that can generate a new image of a person wearing an input try-on garment in a plausible and realistic way. In this paper, we present VITON-GT, a new model for virtual try-on that generates high-quality and photo-realistic images thanks to multiple geometric transformations. In particular, our model is composed of a two-stage geometric transformation module that performs two different projections on the input garment, and a transformation-guided try-on module that synthesizes the new image. We experimentally validate the proposed solution on the most common dataset for this task, containing mainly t-shirts, and we demonstrate its effectiveness compared to different baselines and previous methods. Additionally, we assess the generalization capabilities of our model on a new set of fashion items composed of upper-body clothes from different categories. To the best of our knowledge, we are the first to test virtual try-on architectures in this challenging experimental setting.

2021 Relazione in Atti di Convegno

Page 8 of 11 • Total publications: 107