Publications by Guido Borghi
Explore our research publications: papers, articles, and conference proceedings from AImageLab.
FRCSyn Challenge at WACV 2024:Face Recognition Challenge in the Era of Synthetic Data
Authors: Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Kim, Minchul; Rathgeb, Christian; Liu, Xiaoming; DeAndres-Tame, Ivan; Morales, Aythami; Fierrez, Julian; Ortega-Garcia, Javier; Zhao, Weisong; Zhu, Xiangyu; Yan, Zheyu; Zhang, Xiao-Yu; Wu, Jinlin; Lei, Zhen; Tripathi, Suvidha; Kothari, Mahak; Haider Zama, Md; Deb, Debayan; Biesseck, Bernardo; Vidal, Pedro; Granada, Roger; Fickel, Guilherme; Führ, Gustavo; Menotti, David; Unnervik, Alexander; George, Anjith; Ecabert, Christophe; Otroshi Shahreza, Hatef; Rahimi, Parsa; Marcel, Sébastien; Sarridis, Ioannis; Koutlis, Christos; Baltsou, Georgia; Papadopoulos, Symeon; Diou, Christos; Di Domenico, Nicolò; Borghi, Guido; Pellegrini, Lorenzo; Mas-Candela, Enrique; Sánchez-Pérez, Ángela; Atzori, Andrea; Boutros, Fadi; Damer, Naser; Fenu, Gianni; Marras, Mirko
Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are … (Read full abstract)
Despite the widespread adoption of face recognition technology around the world, and its remarkable performance on current benchmarks, there are still several challenges that must be covered in more detail. This paper offers an overview of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first international challenge aiming to explore the use of synthetic data in face recognition to address existing limitations in the technology. Specifically, the FRCSyn Challenge targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. The results achieved in the FRCSyn Challenge, together with the proposed benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
FRCSyn-onGoing: Benchmarking and comprehensive evaluation of real and synthetic data to improve face recognition systems
Authors: Melzi, Pietro; Tolosana, Ruben; Vera-Rodriguez, Ruben; Kim, Minchul; Rathgeb, Christian; Liu, Xiaoming; DeAndres-Tame, Ivan; Morales, Aythami; Fierrez, Julian; Ortega-Garcia, Javier; Zhao, Weisong; Zhu, Xiangyu; Yan, Zheyu; Zhang, Xiao-Yu; Wu, Jinlin; Lei, Zhen; Tripathi, Suvidha; Kothari, Mahak; Zama, Md Haider; Deb, Debayan; Biesseck, Bernardo; Vidal, Pedro; Granada, Roger; Fickel, Guilherme; Führ, Gustavo; Menotti, David; Unnervik, Alexander; George, Anjith; Ecabert, Christophe; Shahreza, Hatef Otroshi; Rahimi, Parsa; Marcel, Sébastien; Sarridis, Ioannis; Koutlis, Christos; Baltsou, Georgia; Papadopoulos, Symeon; Diou, Christos; Di Domenico, Nicolò; Borghi, Guido; Pellegrini, Lorenzo; Mas-Candela, Enrique; Sánchez-Pérez, Ángela; Atzori, Andrea; Boutros, Fadi; Damer, Naser; Fenu, Gianni; Marras, Mirko
Published in: INFORMATION FUSION
This article presents FRCSyn-onGoing, an ongoing challenge for face recognition where researchers can easily benchmark their systems against the state … (Read full abstract)
This article presents FRCSyn-onGoing, an ongoing challenge for face recognition where researchers can easily benchmark their systems against the state of the art in an open common platform using large-scale public databases and standard experimental protocols. FRCSyn-onGoing is based on the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn) organized at WACV 2024. This is the first face recognition international challenge aiming to explore the use of real and synthetic data independently, and also their fusion, in order to address existing limitations in the technology. Specifically, FRCSyn-onGoing targets concerns related to data privacy issues, demographic biases, generalization to unseen scenarios, and performance limitations in challenging scenarios, including significant age disparities between enrollment and testing, pose variations, and occlusions. To enhance face recognition performance, FRCSyn-onGoing strongly advocates for information fusion at various levels, starting from the input data, where a mix of real and synthetic domains is proposed for specific tasks of the challenge. Additionally, participating teams are allowed to fuse diverse networks within their proposed systems to improve the performance. In this article, we provide a comprehensive evaluation of the face recognition systems and results achieved so far in FRCSyn-onGoing. The results obtained in FRCSyn-onGoing, together with the proposed public ongoing benchmark, contribute significantly to the application of synthetic data to improve face recognition technology.
ONOT: a High-Quality ICAO-compliant Synthetic Mugshot Dataset
Authors: Di Domenico, N.; Borghi, G.; Franco, A.; Maltoni, D.
Nowadays, state-of-the-art AI-based generative models represent a viable solution to overcome privacy issues and biases in the collection of datasets … (Read full abstract)
Nowadays, state-of-the-art AI-based generative models represent a viable solution to overcome privacy issues and biases in the collection of datasets containing personal information, such as faces. Following this intuition, in this paper we introduce ONOT11One, No one and One hundred Thousand (L. Pirandello, 1926), a synthetic dataset specifically focused on the generation of high-quality faces in adherence to the requirements of the ISO/IEC 39794-5 standards that, following the guidelines of the International Civil Aviation Organization (ICAO), defines the interchange formats of face images in electronic Machine-Readable Travel Documents (eMRTD). The strictly controlled and varied mugshot images included in ONOT are useful in research fields related to the analysis of face images in eMRTD, such as Morphing Attack Detection and Face Quality Assessment. The dataset is publicly released2https://miatbiolab.csr.unibo.it/icao-synthetic-dataset, in combination with the generation procedure details in order to improve the reproducibility and enable future extensions.
SDFR: Synthetic Data for Face Recognition Competition
Authors: Shahreza, H. O.; Ecabert, C.; George, A.; Unnervik, A.; Marcel, S.; Di Domenico, N.; Borghi, G.; Maltoni, D.; Boutros, F.; Vogel, J.; Damer, N.; Sanchez-Perez, A.; Mas-Candela, E.; Calvo-Zaragoza, J.; Biesseck, B.; Vidal, P.; Granada, R.; Menotti, D.; Deandres-Tame, I.; La Cava, S. M.; Concas, S.; Melzi, P.; Tolosana, R.; Vera-Rodriguez, R.; Perelli, G.; Orru, G.; Marcialis, G. L.; Fierrez, J.
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns. … (Read full abstract)
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns. With the recent advances in generative models, recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets. This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024) and established to investigate the use of synthetic data for training face recognition models. The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones. In the first task, the face recognition backbone was fixed and the dataset size was limited, while the second task provided almost complete freedom on the model backbone, the dataset, and the training pipeline. The submitted models were trained on existing and also new synthetic datasets and used clever methods to improve training with synthetic data. The submissions were evaluated and ranked on a diverse set of seven benchmarking datasets. The paper gives an overview of the submitted face recognition models and reports achieved performance compared to baseline models trained on real and synthetic datasets. Furthermore, the evaluation of submissions is extended to bias assessment across different demography groups. Lastly, an outlook on the current state of the research in training face recognition models using synthetic data is presented, and existing problems as well as potential future directions are also discussed.
Towards Federated Learning for Morphing Attack Detection
Authors: Robledo-Moreno, M.; Borghi, G.; Di Domenico, N.; Franco, A.; Raja, K.; Maltoni, D.
Through the Face Morphing attack is possible to use the same legal document by two different people, destroying the unique … (Read full abstract)
Through the Face Morphing attack is possible to use the same legal document by two different people, destroying the unique biometric link between the document and its owner. In other words, a morphed face image has the potential to bypass face verification-based security controls, then representing a severe security threat. Unfortunately, the lack of public, extensive and varied training datasets severely hampers the development of effective and robust Morphing Attack Detection (MAD) models, key tools in contrasting the Face Morphing attack since able to automatically detect the presence of morphing images. Indeed, privacy regulations limit the possibility of acquiring, storing, and transferring MAD-related data that contain personal information, such as faces. Therefore, in this paper, we investigate the use of Federated Learning to train a MAD model on local training samples across multiple sites, eliminating the need for a single centralized training dataset, as common in Machine Learning, and then overcoming privacy limitations. Experimental results suggest that FL is a viable solution that will need to be considered in future research works in MAD.
V-MAD: Video-based Morphing Attack Detection in Operational Scenarios
Authors: Borghi, G.; Franco, A.; Di Domenico, N.; Ferrara, M.; Maltoni, D.
In response to the rising threat of the face morphing attack, this paper introduces and explores the potential of Video-based … (Read full abstract)
In response to the rising threat of the face morphing attack, this paper introduces and explores the potential of Video-based Morphing Attack Detection (V-MAD) systems in real-world operational scenarios. While current morphing attack detection methods primarily focus on a single or a pair of images, V-MAD is based on video sequences, exploiting the video streams acquired by face verification tools available, for instance, at airport gates. We show for the first time the advantages that the availability of multiple probe frames brings to the morphing attack detection task, especially in scenarios where the quality of probe images is varied. Experimental results on a real operational database demonstrate that video sequences represent valuable information for increasing the performance of morphing attack detection systems.
Combining Identity Features and Artifact Analysis for Differential Morphing Attack Detection
Authors: Di Domenico, Nicolò; Borghi, Guido; Franco, Annalisa; Maltoni, Davide
Published in: LECTURE NOTES IN COMPUTER SCIENCE
Due to the importance of the Morphing Attack, the development of new and accurate Morphing Attack Detection (MAD) systems is … (Read full abstract)
Due to the importance of the Morphing Attack, the development of new and accurate Morphing Attack Detection (MAD) systems is urgently needed by private and public institutions. In this context, D-MAD methods, i.e. detectors fed with a trusted live image and a probe tend to show better performance with respect to S-MAD approaches, that are based on a single input image. However, D-MAD methods usually leverage the identity of the two input face images only, and then present two main drawbacks: they lose performance when the two subjects look alike, and they do not consider potential artifacts left by the morphing procedure (which are instead typically exploited by S-MAD approaches). Therefore, in this paper, we investigate the combined use of D-MAD and S-MAD to improve detection performance through the fusion of the features produced by these two MAD approaches.