Publications by Costantino Grana

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Costantino Grana

Inferior Alveolar Canal Automatic Detection with Deep Learning CNNs on CBCTs: Development of a Novel Model and Release of Open-Source Dataset and Algorithm

Authors: Di Bartolomeo, Mattia; Pellacani, Arrigo; Bolelli, Federico; Cipriano, Marco; Lumetti, Luca; Negrello, Sara; Allegretti, Stefano; Minafra, Paolo; Pollastri, Federico; Nocini, Riccardo; Colletti, Giacomo; Chiarini, Luigi; Grana, Costantino; Anesi, Alexandre

Published in: APPLIED SCIENCES

Introduction: The need of accurate three-dimensional data of anatomical structures is increasing in the surgical field. The development of convolutional … (Read full abstract)

Introduction: The need of accurate three-dimensional data of anatomical structures is increasing in the surgical field. The development of convolutional neural networks (CNNs) has been helping to fill this gap by trying to provide efficient tools to clinicians. Nonetheless, the lack of a fully accessible datasets and open-source algorithms is slowing the improvements in this field. In this paper, we focus on the fully automatic segmentation of the Inferior Alveolar Canal (IAC), which is of immense interest in the dental and maxillo-facial surgeries. Conventionally, only a bidimensional annotation of the IAC is used in common clinical practice. A reliable convolutional neural network (CNNs) might be timesaving in daily practice and improve the quality of assistance. Materials and methods: Cone Beam Computed Tomography (CBCT) volumes obtained from a single radiological center using the same machine were gathered and annotated. The course of the IAC was annotated on the CBCT volumes. A secondary dataset with sparse annotations and a primary dataset with both dense and sparse annotations were generated. Three separate experiments were conducted in order to evaluate the CNN. The IoU and Dice scores of every experiment were recorded as the primary endpoint, while the time needed to achieve the annotation was assessed as the secondary end-point. Results: A total of 347 CBCT volumes were collected, then divided into primary and secondary datasets. Among the three experiments, an IoU score of 0.64 and a Dice score of 0.79 were obtained thanks to the pre-training of the CNN on the secondary dataset and the creation of a novel deep label propagation model, followed by proper training on the primary dataset. To the best of our knowledge, these results are the best ever published in the segmentation of the IAC. The datasets is publicly available and algorithm is published as open-source software. On average, the CNN could produce a 3D annotation of the IAC in 6.33 s, compared to 87.3 s needed by the radiology technician to produce a bidimensional annotation. Conclusions: To resume, the following achievements have been reached. A new state of the art in terms of Dice score was achieved, overcoming the threshold commonly considered of 0.75 for the use in clinical practice. The CNN could fully automatically produce accurate three-dimensional segmentation of the IAC in a rapid setting, compared to the bidimensional annotations commonly used in the clinical practice and generated in a time-consuming manner. We introduced our innovative deep label propagation method to optimize the performance of the CNN in the segmentation of the IAC. For the first time in this field, the datasets and the source codes used were publicly released, granting reproducibility of the experiments and helping in the improvement of IAC segmentation.

2023 Articolo su rivista

Applications of AI and HPC in the Health Domain

Authors: Oniga, D.; Cantalupo, B.; Tartaglione, E.; Perlo, D.; Grangetto, M.; Aldinucci, M.; Bolelli, F.; Pollastri, F.; Cancilla, M.; Canalini, L.; Grana, C.; Alcalde, C. M.; Cardillo, F. A.; Florea, M.

2022 Capitolo/Saggio

Automated Prediction of Kidney Failure in IgA Nephropathy with Deep Learning from Biopsy Images

Authors: Testa, F.; Fontana, F.; Pollastri, F.; Chester, J.; Leonelli, M.; Giaroni, F.; Gualtieri, F.; Bolelli, F.; Mancini, E.; Nordio, M.; Sacco, P.; Ligabue, G.; Giovanella, S.; Ferri, M.; Alfano, G.; Gesualdo, L.; Cimino, S.; Donati, G.; Grana, C.; Magistroni, R.

Published in: CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY

Background and objectives Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning … (Read full abstract)

Background and objectives Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features. Design, setting, participants, & measurements Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid–Schiff–stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores. Results We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r50.41, P,0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included (1)inflammation within areas of interstitial fibrosis and tubular atrophy and (2) hyaline casts. Conclusions The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.

2022 Articolo su rivista

Connected Components Labeling on Bitonal Images

Authors: Bolelli, Federico; Allegretti, Stefano; Grana, Costantino

Published in: LECTURE NOTES IN COMPUTER SCIENCE

2022 Relazione in Atti di Convegno

Deep Segmentation of the Mandibular Canal: a New 3D Annotated Dataset of CBCT Volumes

Authors: Cipriano, Marco; Allegretti, Stefano; Bolelli, Federico; Di Bartolomeo, Mattia; Pollastri, Federico; Pellacani, Arrigo; Minafra, Paolo; Anesi, Alexandre; Grana, Costantino

Published in: IEEE ACCESS

Inferior Alveolar Nerve (IAN) canal detection has been the focus of multiple recent works in dentistry and maxillofacial imaging. Deep … (Read full abstract)

Inferior Alveolar Nerve (IAN) canal detection has been the focus of multiple recent works in dentistry and maxillofacial imaging. Deep learning-based techniques have reached interesting results in this research field, although the small size of 3D maxillofacial datasets has strongly limited the performance of these algorithms. Researchers have been forced to build their own private datasets, thus precluding any opportunity for reproducing results and fairly comparing proposals. This work describes a novel, large, and publicly available mandibular Cone Beam Computed Tomography (CBCT) dataset, with 2D and 3D manual annotations, provided by expert clinicians. Leveraging this dataset and employing deep learning techniques, we are able to improve the state of the art on the 3D mandibular canal segmentation. The source code which allows to exactly reproduce all the reported experiments is released as an open-source project, along with this article.

2022 Articolo su rivista

Improving Segmentation of the Inferior Alveolar Nerve through Deep Label Propagation

Authors: Cipriano, Marco; Allegretti, Stefano; Bolelli, Federico; Pollastri, Federico; Grana, Costantino

Published in: PROCEEDINGS IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION

2022 Relazione in Atti di Convegno

Long-Range 3D Self-Attention for MRI Prostate Segmentation

Authors: Pollastri, Federico; Cipriano, Marco; Bolelli, Federico; Grana, Costantino

Published in: PROCEEDINGS INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING

The problem of prostate segmentation from Magnetic Resonance Imaging (MRI) is an intense research area, due to the increased use … (Read full abstract)

The problem of prostate segmentation from Magnetic Resonance Imaging (MRI) is an intense research area, due to the increased use of MRI in the diagnosis and treatment planning of prostate cancer. The lack of clear boundaries and huge variation of texture and shapes between patients makes the task very challenging, and the 3D nature of the data makes 2D segmentation algorithms suboptimal for the task. With this paper, we propose a novel architecture to fill the gap between the most recent advances in 2D computer vision and 3D semantic segmentation. In particular, the designed model retrieves multi-scale 3D features with dilated convolutions and makes use of a self-attention transformer to gain a global field of view. The proposed Long-Range 3D Self-Attention block allows the convolutional neural network to build significant features by merging together contextual information collected at various scales. Experimental results show that the proposed method improves the state-of-the-art segmentation accuracy on MRI prostate segmentation.

2022 Relazione in Atti di Convegno

One DAG to Rule Them All

Authors: Bolelli, Federico; Allegretti, Stefano; Grana, Costantino

Published in: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are … (Read full abstract)

In this paper, we present novel strategies for optimizing the performance of many binary image processing algorithms. These strategies are collected in an open-source framework, GRAPHGEN, that is able to automatically generate optimized C++ source code implementing the desired optimizations. Simply starting from a set of rules, the algorithms introduced with the GRAPHGEN framework can generate decision trees with minimum average path-length, possibly considering image pattern frequencies, apply state prediction and code compression by the use of Directed Rooted Acyclic Graphs (DRAGs). Moreover, the proposed algorithmic solutions allow to combine different optimization techniques and significantly improve performance. Our proposal is showcased on three classical and widely employed algorithms (namely Connected Components Labeling, Thinning, and Contour Tracing). When compared to existing approaches —in 2D and 3D—, implementations using the generated optimal DRAGs perform significantly better than previous state-of-the-art algorithms, both on CPU and GPU.

2022 Articolo su rivista

Quest for Speed: The Epic Saga of Record-Breaking on OpenCV Connected Components Extraction

Authors: Bolelli, Federico; Allegretti, Stefano; Grana, Costantino

Published in: LECTURE NOTES IN COMPUTER SCIENCE

Connected Components Labeling (CCL) represents an essential part of many Image Processing and Computer Vision pipelines. Given its relevance on … (Read full abstract)

Connected Components Labeling (CCL) represents an essential part of many Image Processing and Computer Vision pipelines. Given its relevance on the field, it has been part of most cutting-edge Computer Vision libraries. In this paper, all the algorithms included in the OpenCV during the years are reviewed, from sequential to parallel/GPU-based implementations. Our goal is to provide a better understanding of what has changed and why one algorithm should be preferred to another both in terms of memory usage and execution speed.

2022 Relazione in Atti di Convegno

A Cone Beam Computed Tomography Annotation Tool for Automatic Detection of the Inferior Alveolar Nerve Canal

Authors: Mercadante, Cristian; Cipriano, Marco; Bolelli, Federico; Pollastri, Federico; Di Bartolomeo, Mattia; Anesi, Alexandre; Grana, Costantino

In recent years, deep learning has been employed in several medical fields, achieving impressive results. Unfortunately, these algorithms require a … (Read full abstract)

In recent years, deep learning has been employed in several medical fields, achieving impressive results. Unfortunately, these algorithms require a huge amount of annotated data to ensure the correct learning process. When dealing with medical imaging, collecting and annotating data can be cumbersome and expensive. This is mainly related to the nature of data, often three-dimensional, and to the need for well-trained expert technicians. In maxillofacial imagery, recent works have been focused on the detection of the Inferior Alveolar Nerve (IAN), since its position is of great relevance for avoiding severe injuries during surgery operations such as third molar extraction or implant installation. In this work, we introduce a novel tool for analyzing and labeling the alveolar nerve from Cone Beam Computed Tomography (CBCT) 3D volumes.

2021 Relazione in Atti di Convegno

Page 4 of 24 • Total publications: 234