Publications by Angelo Porrello

Explore our research publications: papers, articles, and conference proceedings from AImageLab.

Tip: type @ to pick an author and # to pick a keyword.

Active filters (Clear): Author: Angelo Porrello

Predicting WNV circulation in Italy using earth observation data and extreme gradient boosting model

Authors: Candeloro, L.; Ippoliti, C.; Iapaolo, F.; Monaco, F.; Morelli, D.; Cuccu, R.; Fronte, P.; Calderara, S.; Vincenzi, S.; Porrello, A.; D'Alterio, N.; Calistri, P.; Conte, A.

Published in: REMOTE SENSING

West Nile Disease (WND) is one of the most spread zoonosis in Italy and Europe caused by a vector-borne virus. … (Read full abstract)

West Nile Disease (WND) is one of the most spread zoonosis in Italy and Europe caused by a vector-borne virus. Its transmission cycle is well understood, with birds acting as the primary hosts and mosquito vectors transmitting the virus to other birds, while humans and horses are occasional dead-end hosts. Identifying suitable environmental conditions across large areas containing multiple species of potential hosts and vectors can be difficult. The recent and massive availability of Earth Observation data and the continuous development of innovative Machine Learning methods can contribute to automatically identify patterns in big datasets and to make highly accurate identification of areas at risk. In this paper, we investigated the West Nile Virus (WNV) circulation in relation to Land Surface Temperature, Normalized Difference Vegetation Index and Surface Soil Moisture collected during the 160 days before the infection took place, with the aim of evaluating the predictive capacity of lagged remotely sensed variables in the identification of areas at risk for WNV circulation. WNV detection in mosquitoes, birds and horses in 2017, 2018 and 2019, has been collected from the National Information System for Animal Disease Notification. An Extreme Gradient Boosting model was trained with data from 2017 and 2018 and tested for the 2019 epidemic, predicting the spatio-temporal WNV circulation two weeks in advance with an overall accuracy of 0.84. This work lays the basis for a future early warning system that could alert public authorities when climatic and environmental conditions become favourable to the onset and spread of WNV.

2020 Articolo su rivista

Rethinking Experience Replay: a Bag of Tricks for Continual Learning

Authors: Buzzega, Pietro; Boschini, Matteo; Porrello, Angelo; Calderara, Simone

Published in: INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

In Continual Learning, a Neural Network is trained on a stream of data whose distribution shifts over time. Under these … (Read full abstract)

In Continual Learning, a Neural Network is trained on a stream of data whose distribution shifts over time. Under these assumptions, it is especially challenging to improve on classes appearing later in the stream while remaining accurate on previous ones. This is due to the infamous problem of catastrophic forgetting, which causes a quick performance degradation when the classifier focuses on learning new categories. Recent literature proposed various approaches to tackle this issue, often resorting to very sophisticated techniques. In this work, we show that naïve rehearsal can be patched to achieve similar performance. We point out some shortcomings that restrain Experience Replay (ER) and propose five tricks to mitigate them. Experiments show that ER, thus enhanced, displays an accuracy gain of 51.2 and 26.9 percentage points on the CIFAR-10 and CIFAR-100 datasets respectively (memory buffer size 1000). As a result, it surpasses current state-of-the-art rehearsal-based methods.

2020 Relazione in Atti di Convegno

Robust Re-Identification by Multiple Views Knowledge Distillation

Authors: Porrello, Angelo; Bergamini, Luca; Calderara, Simone

Published in: LECTURE NOTES IN COMPUTER SCIENCE

To achieve robustness in Re-Identification, standard methods leverage tracking information in a Video-To-Video fashion. However, these solutions face a large … (Read full abstract)

To achieve robustness in Re-Identification, standard methods leverage tracking information in a Video-To-Video fashion. However, these solutions face a large drop in performance for single image queries (e.g., Image-To-Video setting). Recent works address this severe degradation by transferring temporal information from a Video-based network to an Image-based one. In this work, we devise a training strategy that allows the transfer of a superior knowledge, arising from a set of views depicting the target object. Our proposal - Views Knowledge Distillation (VKD) - pins this visual variety as a supervision signal within a teacher-student framework, where the teacher educates a student who observes fewer views. As a result, the student outperforms not only its teacher but also the current state-of-the-art in Image-To-Video by a wide margin (6.3% mAP on MARS, 8.6% on Duke-Video-ReId and 5% on VeRi-776). A thorough analysis - on Person, Vehicle and Animal Re-ID - investigates the properties of VKD from a qualitatively and quantitatively perspective.

2020 Relazione in Atti di Convegno

Scoring pleurisy in slaughtered pigs using convolutional neural networks

Authors: Trachtman, A. R.; Bergamini, L.; Palazzi, A.; Porrello, A.; Capobianco Dondona, A.; Del Negro, E.; Paolini, A.; Vignola, G.; Calderara, S.; Marruchella, G.

Published in: VETERINARY RESEARCH

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide. Considering the relatively … (Read full abstract)

Diseases of the respiratory system are known to negatively impact the profitability of the pig industry, worldwide. Considering the relatively short lifespan of pigs, lesions can be still evident at slaughter, where they can be usefully recorded and scored. Therefore, the slaughterhouse represents a key check-point to assess the health status of pigs, providing unique and valuable feedback to the farm, as well as an important source of data for epidemiological studies. Although relevant, scoring lesions in slaughtered pigs represents a very time-consuming and costly activity, thus making difficult their systematic recording. The present study has been carried out to train a convolutional neural network-based system to automatically score pleurisy in slaughtered pigs. The automation of such a process would be extremely helpful to enable a systematic examination of all slaughtered livestock. Overall, our data indicate that the proposed system is well able to differentiate half carcasses affected with pleurisy from healthy ones, with an overall accuracy of 85.5%. The system was better able to recognize severely affected half carcasses as compared with those showing less severe lesions. The training of convolutional neural networks to identify and score pneumonia, on the one hand, and the achievement of trials in large capacity slaughterhouses, on the other, represent the natural pursuance of the present study. As a result, convolutional neural network-based technologies could provide a fast and cheap tool to systematically record lesions in slaughtered pigs, thus supplying an enormous amount of useful data to all stakeholders in the pig industry.

2020 Articolo su rivista

Classifying Signals on Irregular Domains via Convolutional Cluster Pooling

Authors: Porrello, Angelo; Abati, Davide; Calderara, Simone; Cucchiara, Rita

Published in: PROCEEDINGS OF MACHINE LEARNING RESEARCH

We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties … (Read full abstract)

We present a novel and hierarchical approach for supervised classification of signals spanning over a fixed graph, reflecting shared properties of the dataset. To this end, we introduce a Convolutional Cluster Pooling layer exploiting a multi-scale clustering in order to highlight, at different resolutions, locally connected regions on the input graph. Our proposal generalises well-established neural models such as Convolutional Neural Networks (CNNs) on irregular and complex domains, by means of the exploitation of the weight sharing property in a graph-oriented architecture. In this work, such property is based on the centrality of each vertex within its soft-assigned cluster. Extensive experiments on NTU RGB+D, CIFAR-10 and 20NEWS demonstrate the effectiveness of the proposed technique in capturing both local and global patterns in graph-structured data out of different domains.

2019 Relazione in Atti di Convegno

Latent Space Autoregression for Novelty Detection

Authors: Abati, Davide; Porrello, Angelo; Calderara, Simone; Cucchiara, Rita

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of … (Read full abstract)

Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detector is utterly complex due to the unpredictable nature of novelties and its inaccessibility during the training procedure, factors which expose the unsupervised nature of the problem. In our proposal, we design a general framework where we equip a deep autoencoder with a parametric density estimator that learns the probability distribution underlying its latent representations through an autoregressive procedure. We show that a maximum likelihood objective, optimized in conjunction with the reconstruction of normal samples, effectively acts as a regularizer for the task at hand, by minimizing the differential entropy of the distribution spanned by latent vectors. In addition to providing a very general formulation, extensive experiments of our model on publicly available datasets deliver on-par or superior performances if compared to state-of-the-art methods in one-class and video anomaly detection settings. Differently from prior works, our proposal does not make any assumption about the nature of the novelties, making our work readily applicable to diverse contexts.

2019 Relazione in Atti di Convegno

METODO DI VALUTAZIONE DI UNO STATO DI SALUTE DI UN ELEMENTO ANATOMICO, RELATIVO DISPOSITIVO DI VALUTAZIONE E RELATIVO SISTEMA DI VALUTAZIONE

Authors: Giuseppe, Marrucchella; Bergamini, Luca; Porrello, Angelo; Del Negro, Ercole; Capobianco Dondona, Andrea; Di Tondo, Francesco; Calderara, Simone

Sistema in grado di rilevare le lesioni delle mezzene al macello attraverso l'utilizzo di tecniche di deep learning per individuazioni … (Read full abstract)

Sistema in grado di rilevare le lesioni delle mezzene al macello attraverso l'utilizzo di tecniche di deep learning per individuazioni del tipo di lesioni presenti

2019 Brevetto

Spotting Insects from Satellites: Modeling the Presence of Culicoides Imicola Through Deep CNNs

Authors: Vincenzi, Stefano; Porrello, Angelo; Buzzega, Pietro; Conte, Annamaria; Ippoliti, Carla; Candeloro, Luca; Di Lorenzo, Alessio; Capobianco Dondona, Andrea; Calderara, Simone

Nowadays, Vector-Borne Diseases (VBDs) raise a severe threat for public health, accounting for a considerable amount of human illnesses. Recently, … (Read full abstract)

Nowadays, Vector-Borne Diseases (VBDs) raise a severe threat for public health, accounting for a considerable amount of human illnesses. Recently, several surveillance plans have been put in place for limiting the spread of such diseases, typically involving on-field measurements. Such a systematic and effective plan still misses, due to the high costs and efforts required for implementing it. Ideally, any attempt in this field should consider the triangle vectors-host-pathogen, which is strictly linked to the environmental and climatic conditions. In this paper, we exploit satellite imagery from Sentinel-2 mission, as we believe they encode the environmental factors responsible for the vector's spread. Our analysis - conducted in a data-driver fashion - couples spectral images with ground-truth information on the abundance of Culicoides imicola. In this respect, we frame our task as a binary classification problem, underpinning Convolutional Neural Networks (CNNs) as being able to learn useful representation from multi-band images. Additionally, we provide a multi-instance variant, aimed at extracting temporal patterns from a short sequence of spectral images. Experiments show promising results, providing the foundations for novel supportive tools, which could depict where surveillance and prevention measures could be prioritized.

2019 Relazione in Atti di Convegno

Multi-views Embedding for Cattle Re-identification

Authors: Bergamini, Luca; Porrello, Angelo; Andrea Capobianco Dondona, ; Ercole Del Negro, ; Mattioli, Mauro; D’Alterio, Nicola; Calderara, Simone

People re-identification task has seen enormous improvements in the latest years, mainly due to the development of better image features … (Read full abstract)

People re-identification task has seen enormous improvements in the latest years, mainly due to the development of better image features extraction from deep Convolutional Neural Networks (CNN) and the availability of large datasets. However, little research has been conducted on animal identification and re-identification, even if this knowledge may be useful in a rich variety of different scenarios. Here, we tackle cattle re-identification exploiting deep CNN and show how this task is poorly related to the human one, presenting unique challenges that make it far from being solved. We present various baselines, both based on deep architectures or on standard machine learning algorithms, and compared them with our solution. Finally, a rich ablation study has been conducted to further investigate the unique peculiarities of this task.

2018 Relazione in Atti di Convegno
« 3 4

Page 5 of 5 • Total publications: 49